【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2024-11-12 19:04
2024-11-12 17:12
【摘要】第五單元平面向量與復(fù)數(shù)第一節(jié)平面向量的概念及其線性運算基礎(chǔ)梳理名稱定義表示法向量既有又有的量;向量的大小叫做向量的(或),向量_______模_________零向量長度為的向量;其方向是任意的
2024-11-12 18:19
【摘要】空間向量的坐標(biāo)運算一.問題情境四.課堂練習(xí)五.小結(jié)作業(yè)二.學(xué)生活動三.?dāng)?shù)學(xué)應(yīng)用蘇教版選修1-1海安縣實驗中學(xué)高二數(shù)學(xué)備課組1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個單位向量(,)pxy則的坐標(biāo)
2024-11-10 01:37
【摘要】第二節(jié)向量及其線性運算一、向量及其幾何表示二、向量的坐標(biāo)表示三、向量的模與方向角四、向量的線性運算五、向量的分向量表示式六、小結(jié)思考題向量(vector):既有大小又有方向的量.向量表示:以1M為起點,2M為終點的有向線段.1M2M??a?21MM一、向量及其幾何表示
2024-08-30 12:44
【摘要】導(dǎo)入新課復(fù)習(xí)上一節(jié)課,我們借助“類比思想”把平面向量的有關(guān)概念及加減運算擴展到了空間.(1)加法法則及減法法則平行四邊形法則或三角形法則.(2)運算律加法交換律及結(jié)合律.兩個空間向量的加、減法與兩個平面向量的加、減法實質(zhì)是
2025-06-12 19:01
【摘要】數(shù)量積運算一、兩個向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個向量的數(shù)量積注:①兩個向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
2025-01-22 01:08
【摘要】空間向量的坐標(biāo)運算(一)儋州市第一中學(xué)數(shù)學(xué)組吳應(yīng)杰空間向量的基本定理:如果三個向量不共面,那么對空間任一向量,存在一個唯一的有序?qū)崝?shù)組x、y、z,使得:c,b,a???p?czbyaxp?????cba,,叫做空間的一個______基底空間任意三個不共面向
2024-10-17 13:31
【摘要】§3.空間向量運算的坐標(biāo)表示知識點一空間向量的坐標(biāo)運算設(shè)a=(1,5,-1),b=(-2,3,5).(1)若(ka+b)∥(a-3b),求k;(2)若(ka+b)⊥(a-3b),求k.解(1)ka+b=(k-2,5k+3,-k+5)
2024-11-20 03:14
【摘要】§3.空間向量的數(shù)量積運算知識點一求兩向量的數(shù)量積如圖所示,已知正四面體O-ABC的棱長為a,求AB·OC..解由題意知|AB|=|AC|=|AO|=a,且〈AB,AO〉=120AB,CA〉=12
【摘要】空間向量的坐標(biāo)一向量在軸上的投影與投影定理二向量在坐標(biāo)軸上的分量與向量的坐標(biāo)三向量的模與方向余弦的坐標(biāo)表示式一、向量在軸上的投影與投影定理.上的有向線段是軸,設(shè)有一軸uABuuAB.ABABABuuABuABAB==llllll,即的值,
2024-11-17 23:31
【摘要】答案返回
2024-08-01 08:49
【摘要】向量加法運算及其幾何意義復(fù)習(xí)引入向量的定義及有關(guān)概念:(1)向量是既有大小又有方向的量.(2)大小相等、方向相同的向量相等.與起點位置無關(guān)。中小學(xué)課件網(wǎng)有部分課件由于控制文件大小,內(nèi)容不完整,請聯(lián)系購買完整版問題:數(shù)可進行加法運算,例如:
2024-12-07 22:17
【摘要】復(fù)習(xí)回顧:平面向量1、定義:既有大小又有方向的量。幾何表示法:相等向量:長度相等且方向相同的向量AB用小寫字母表示,或者用表示向量的有向線段的起點和終點字母表示。aCD用有向線段表示字母表示法:2、平面向量的加法、減法與數(shù)乘運算向量加法的三角形法則ab向
2024-11-09 08:13
【摘要】?1.相反向量?我們規(guī)定,與a長度,方向的向量,叫做a的相反向量,記作-a,零向量的相反向量仍是.?關(guān)于相反向量有以下結(jié)論?①-(-a)=;?②a+(-a)=(-a)+a=;?③若a、b是互為相反的向量,則b=-a,a+b
2024-11-12 16:45