freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

廣西自然科學(xué)基金資助項目(存儲版)

2025-07-30 00:15上一頁面

下一頁面
  

【正文】 toand is the identity of. For any , then, according to the property of coset, we can get: if and only if and , . =. Now let we look at our proof: , is a group homomorphism from onto and the kernel of is . According to the FHT, we can get .Theorem 2. Let is a group homomorphism from onto .If and , then where .Proof: According to Lemma 2.[2] (2), we know .To establish , we firstly need to construct a mapping and prove is a group homomorphism from onto . We give the mapping defined by where =.For , since is a surjection from to , we must be found such that .Thus is onto.For arbitrary , Therefore is a group homomorphism.We will now show , in fact we know that is identity of , according to Lemma 4, we can get that for, then , say , so that. On the other hand , , that is to say , .Moreover , because of , therefore . That is . According to the FHT, we can obtain . Theorem 1 and Theorem 2 apply Exercise 1 and Exercise 2.Exercise 1. is normal subgroup of , is a normal subgroup of .So that for any and , for a function: we have is a group isomorphism, so that Assume and are sets of all the nonzero real numbers and positive real numbers respectively, it is readily to verify that they are indeed group with ordinary multiplication.Exercise 2. Let be general linear group of 22 matrices over under ordinary matrix multiplication . Then the mapping is a group homomorphism from ont
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1