【摘要】第3課時(shí) 利用“角邊角”“角角邊”判定三角形全等學(xué)前溫故新課早知判定三角形全等的方法:(1)三邊分別 的兩個(gè)三角形全等(可以簡寫成“ ”或“ ”).?(2)兩邊和它們的夾角分別 的兩個(gè)三角形全等(可以簡寫成“ ”或“ ”).?相等邊邊邊
2025-06-19 18:45
【摘要】1
2025-06-13 13:31
【摘要】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三
2025-06-15 12:08
【摘要】等腰三角形的性質(zhì)新課導(dǎo)入等腰三角形一.基本概念:兩條邊相等的三角形叫做等腰三角形.如圖AB=AC,△ABC就是等腰三角形:相等的兩邊叫做腰另一邊叫做底邊兩腰的夾角叫做頂角腰和底邊的夾角叫做底角ABC腰腰底邊
2025-06-16 01:53
【摘要】三角形全等的判定第1課時(shí)利用三邊判定三角形全等(SSS)知識(shí)要點(diǎn)基礎(chǔ)練知識(shí)點(diǎn)1三角形全等的判定方法——“邊邊邊”,下列三角形中,與△ABC全等的是(C)A.①B.②C.③D.④知識(shí)要點(diǎn)基礎(chǔ)練,在四邊形ABCD中,AB=CD,AD=BC,O為對(duì)角線AC,BD的交點(diǎn)
2025-06-17 19:14
【摘要】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階
2025-06-14 12:14
【摘要】第十二章全等三角形三角形全等的判定第4課時(shí)直角三角形全等的判定2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?R用“HL”證明三角形全等和對(duì)應(yīng)相等的兩個(gè)直角三角形全等(可以簡寫成“斜邊、直角邊”或“HL”).自我診斷1.如圖所示,BD、CE是△ABC
2025-06-13 14:00
2025-06-13 13:30
【摘要】EFEF
2025-06-14 13:35
【摘要】第14章全等三角形三角形全等的判定第3課時(shí)2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?HKSSS定理的應(yīng)用自我診斷1.如圖,在△ABC中,AB=AC,BE=CE,則由“SSS”可直接判定()A.△ABD≌△ACDB.△ABE≌△A
2025-06-17 01:43
2025-06-18 12:27
2025-06-18 12:55
【摘要】等腰三角形的判定1、等腰三角形是怎樣定義的?有兩條邊相等的三角形,叫做等腰三角形.③等腰三角形是軸對(duì)稱圖形.②等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡稱“三線合一”).①等腰三角形的兩個(gè)底角相等.(簡寫成“等邊對(duì)等角”)2、等腰三角形有哪些性質(zhì)?D
2025-06-20 21:07
2025-06-14 13:21