【摘要】三角形全等的判定第5課時1、判定兩個三角形全等方法,.,.,.。3、如圖,AB⊥BE于B,DE⊥BE于E,2、如圖,RtABC中,直角邊、,斜邊。?ABCBCACAB(1)若A=D,AB=DE,則ABC與DEF(填“全等
2025-06-12 06:04
【摘要】三角形全等的判定因鋪設電線的需要,要在池塘兩側A、B處各埋設一根電線桿(如圖),因無法直接量出A、B兩點的距離,現(xiàn)有一足夠的米尺。怎樣測出A、B兩桿之間的距離呢?AB創(chuàng)設情景明確目標做一做:畫△ABC,使AB=3cm,AC=4cm。畫法:2.在射線AM上截取AB=3cm
2025-06-19 06:24
2025-06-20 12:18
2025-06-17 19:14
【摘要】第4課時三邊對應相等的兩個三角形全等(可以簡寫為“邊邊邊”或“SSS”)。已知三角形三條邊分別是4cm,5cm,7cm,畫出這個三角形,把所畫的三角形分別剪下來,并與同伴比一比,發(fā)現(xiàn)什么?探究點一“邊邊邊”思考:你能用“邊邊邊”解釋三角形具有穩(wěn)定性嗎?判斷兩個三角形全等的推理過程,叫做證明三角形
2025-06-17 19:27
【摘要】等腰三角形的判定1、等腰三角形是怎樣定義的?有兩條邊相等的三角形,叫做等腰三角形.③等腰三角形是軸對稱圖形.②等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡稱“三線合一”).①等腰三角形的兩個底角相等.(簡寫成“等邊對等角”)2、等腰三角形有哪些性質?D
2025-06-20 21:07
【摘要】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)
2025-06-13 13:48
2025-06-14 13:12
【摘要】邊邊邊學案預習學案:1.如果兩個三角形的三條邊分別對應_________,那么這兩個三角形_______,簡記為________(或_________)。2.如圖,如果,ABCDBCAD??,那么ABC??_______理由是___________.3.如圖,已知ABAC?,若使ABDACD???,則需要補
2024-11-18 18:12
【摘要】第1頁共4頁八年級數(shù)學三角形全等的判定(全等三角形)基礎練習試卷簡介:全卷共4個填空題,8個證明題,測試時間為30分鐘,共100分。本卷試題立足基礎,主要考察了學生對全等三角形判定的掌握情況。各個題目難度不一,學生在做題過程中可回顧本章知識點,加強對全等三角形的認識。學習建議:本講主要內(nèi)容是全
2025-08-11 22:19
【摘要】THANKS
2025-03-13 02:49
【摘要】第13章全等三角形三角形全等的判定角邊角1.基本事實(“角邊角”):如果兩個三角形有兩個角及其分別對應相等,那么這兩個三角形全等,簡記為角邊角(或).2.角角邊定理:如果兩個三角形有兩個角和其中一個角的分別對應相等,那么這兩個三角形全等,簡記為角角邊(或
2025-06-14 17:55
【摘要】等腰三角形的性質新課導入等腰三角形一.基本概念:兩條邊相等的三角形叫做等腰三角形.如圖AB=AC,△ABC就是等腰三角形:相等的兩邊叫做腰另一邊叫做底邊兩腰的夾角叫做頂角腰和底邊的夾角叫做底角ABC腰腰底邊
2025-06-20 20:54
【摘要】第13章全等三角形等腰三角形2022秋季數(shù)學八年級上冊?HS如果一個三角形的兩個角相等,那么這兩個角所對的邊,簡寫成“”.自我診斷1.如圖,在△ABC中,∠B=∠C,AB=5,則AC的長為()A.2
2025-06-13 13:34
2025-06-14 18:32