【摘要】遼寧高考數(shù)學(xué)命題教研小組24小時咨詢電話:13591657580(姚老師)12022高考題分類匯編——圓錐曲線一、選擇題1.(2022湖南文)5.設(shè)拋物線28yx?上一點P到y(tǒng)軸的距離是4,則點P到該拋物線焦點的距離是A.4B.6C.8
2025-01-09 16:08
【摘要】專題研究:圓錐曲線【定義法的應(yīng)用】一.利用圓錐曲線定義巧求離心率例1.F1、F2是橢圓的兩個焦點,過F2作一條直線交橢圓于P、Q兩點,使PF1⊥PQ,且|PF1|=|PQ|,求橢圓的離心率e.解:設(shè)|PF1|=t,則|PQ|=t,|F1Q|=2t,由橢圓定義有:|PF1|+|PF2|=|QF
2025-01-09 11:01
【摘要】-1-2020高考試題分類匯編:8:圓錐曲線一、選擇題1.【2020高考新課標(biāo)文4】設(shè)12FF是橢圓22:1(0)xyEabab????的左、右焦點,P為直線32ax?上一點,12PFF?是底角為30的等腰三角形,則E的離心率為()()A12()B2
2025-10-25 07:20
【摘要】 高考數(shù)學(xué)-圓錐曲線簡化計算技巧 圓錐曲線計算技巧——整理自有道精品課關(guān)旭老師公開課“新高三圓錐曲線專項”給定一個橢圓和一條直線:橢圓方程:x2a2+y2b2=1直線方程:y=kx+b一般做...
2025-01-14 22:17
【摘要】圓錐曲線復(fù)習(xí)(二)數(shù)學(xué)高二年級例1已知雙曲線的中心在原點,且一個焦點為F,直線與其相交于M、N兩點,MN中點的橫坐標(biāo)為,則此雙曲線的方程是______.解:解得所求雙曲線方程例2橢圓
2025-10-28 23:19
【摘要】圓錐曲線復(fù)習(xí)(一)數(shù)學(xué)高二年級例1已知圓C:(x-a)2+(y-2)2=4及直線l:x-y+3=0,當(dāng)直線l被圓C截得的弦長為時,則a=________.解出解:由平面幾何知:圓心到直線的距離為1,由點到直線的距離公式得CBAD例2已知拋物線
2025-10-28 19:11
【摘要】1 橢 圓典例精析題型一 求橢圓的標(biāo)準(zhǔn)方程【例1】已知點P在以坐標(biāo)軸為對稱軸的橢圓上,點P到兩焦點的距離分別為和453,過P作長軸的垂線恰好過橢圓的一個焦點,求橢圓的方程.253【解析】故所求方程為+=1或+=1.x253y2103x210y25【點撥】(1)在求橢圓的標(biāo)準(zhǔn)方程
2025-04-17 12:54
【摘要】第-1-頁共27頁2020高考試題分類匯編:圓錐曲線一、選擇題1.【2020高考新課標(biāo)文4】設(shè)12FF是橢圓22:1(0)xyEabab????的左、右焦點,P為直線32ax?上一點,12PFF?是底角為30的等腰三角形,則E的離心率為()()A12
2025-10-25 05:52
【摘要】你若想做,總會找到方法!弦長專題(A組)1,過拋物線y2=4x的焦點作直線交拋物線于A(x1,y1),B(x2,y2)兩點,若x1+x2=6,那么|AB|等于_______2,過拋物線焦點的直線交拋物線于A、B兩點,已知|AB|=
2025-07-25 00:14
【摘要】知識指要橢圓注1:總有ab0,c2=a2-b2xOyF1F2MxOyF1F2M注2:判斷橢圓標(biāo)準(zhǔn)方程的焦點在哪個軸上的準(zhǔn)則:焦點在分母大的那個軸上注3:橢圓上到焦點的距離最大和最小的點是橢圓長軸的兩個端點知識指要橢圓1、橢圓第
2025-10-31 23:28
【摘要】 圓錐曲線高考??碱}型:一、基本概念、基本性質(zhì)題型二、平面幾何知識與圓錐曲線基礎(chǔ)知識的結(jié)合題型三、直線與圓錐曲線的相交關(guān)系題型(一)中點、中點弦公式(二)弦長(三)焦半徑與焦點三角形四、面積題型(一)三角形面積(二)四邊形面積五、向量題型(一)向量數(shù)乘形式(二)向量數(shù)量積形式(三)向量加減法運算(四)點分向量
2025-04-17 00:20
【摘要】2.(2020·浙江卷)設(shè)拋物線y2=2px(p0)的焦點為F,點A(0,2).若線段FA的中點B在拋物線上,則B到該拋物線準(zhǔn)線的距離為___.分析:一般情況下,此類問題是求離心率的值,而這里卻是求離心率的取值范
2025-08-14 05:42
【摘要】高考圓錐曲線的七種題型題型一:定義的應(yīng)用1、圓錐曲線的定義:(1)橢圓(2)橢圓(3)橢圓
2025-05-30 22:40
【摘要】高考圓錐曲線壓軸題型總結(jié)直線與圓錐曲線相交,一般采取設(shè)而不求,利用韋達定理,在這里我將這個問題分成了三種類型,其中第一種類型的變式比較多。而方程思想,函數(shù)思想在這里也用得多,兩種思想可以提供簡單的思路,簡單的說就是只需考慮未知數(shù)個數(shù)和條件個數(shù),。使用韋達定理時需注意成立的條件。題型4有關(guān)定點,定值問題。將與之無關(guān)的參數(shù)提取出來,再對其系數(shù)進行處理。(湖北卷)設(shè)A、B是橢圓上的兩點,點
2025-05-30 22:41
【摘要】......圓錐曲線的七種??碱}型題型一:定義的應(yīng)用1、圓錐曲線的定義:(1)橢圓(2)雙曲線
2025-04-17 13:05