freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

江蘇省高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)精華版(存儲(chǔ)版)

2025-05-17 04:54上一頁面

下一頁面
  

【正文】 公式組二 公式組三 公式組四 公式組五 公式組六 (二)角與角之間的互換公式組一 公式組二 公式組三 公式組四 公式組五 ,.10. 正弦、余弦、正切、余切函數(shù)的圖象的性質(zhì):(A、>0)定義域RRR值域RR周期性 奇偶性奇函數(shù)偶函數(shù)奇函數(shù)奇函數(shù)當(dāng)非奇非偶當(dāng)奇函數(shù)單調(diào)性上為增函數(shù);上為減函數(shù)();上為增函數(shù)上為減函數(shù)()上為增函數(shù)()上為減函數(shù)()上為增函數(shù);上為減函數(shù)()注意:①與的單調(diào)性正好相反;,若在上遞增(減),則在上遞減(增).②與的周期是.③或()的周期.的周期為2(,如圖,翻折無效). ④的對(duì)稱軸方程是(),對(duì)稱中心();的對(duì)稱軸方程是(),對(duì)稱中心();的對(duì)稱中心().⑤當(dāng)(3)掌握實(shí)數(shù)與向量的積,理解兩個(gè)向量共線的充要條件.?dāng)?shù)學(xué)探索169。ab=1/2ac(5)理解不等式│a││b│≤│a+b│≤│a│+│b│:數(shù)學(xué)探索169。07. 直線和圓的方程 知識(shí)要點(diǎn)一、直線方程.1. 直線的傾斜角:一條直線向上的方向與軸正方向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時(shí),其傾斜角為0,故直線傾斜角的范圍是.注:①當(dāng)或時(shí),直線垂直于軸,它的斜率不存在.②每一條直線都存在惟一的傾斜角,除與軸垂直的直線不存在斜率外,其余每一條直線都有惟一的斜率,并且當(dāng)直線的斜率一定時(shí),其傾斜角也對(duì)應(yīng)確定.2. 直線方程的幾種形式:點(diǎn)斜式、截距式、兩點(diǎn)式、斜切式.特別地,當(dāng)直線經(jīng)過兩點(diǎn),即直線在軸,軸上的截距分別為時(shí),直線方程是:.注:若是一直線的方程,則這條直線的方程是,但若則不是這條線.附:直線系:對(duì)于直線的斜截式方程,當(dāng)均為確定的數(shù)值時(shí),它表示一條確定的直線,如果變化時(shí),對(duì)應(yīng)的直線也會(huì)變化.①當(dāng)為定植,變化時(shí),它們表示過定點(diǎn)(0,)的直線束.②當(dāng)為定值,變化時(shí),它們表示一組平行直線.3. ⑴兩條直線平行:∥兩條直線平行的條件是:①和是兩條不重合的直線. ②在和的斜率都存在的前提下得到的. 因此,應(yīng)特別注意,抽掉或忽視其中任一個(gè)“前提”都會(huì)導(dǎo)致結(jié)論的錯(cuò)誤.(一般的結(jié)論是:對(duì)于兩條直線,它們?cè)谳S上的縱截距是,則∥,且或的斜率均不存在,即是平行的必要不充分條件,且)推論:如果兩條直線的傾斜角為則∥. ⑵兩條直線垂直:兩條直線垂直的條件:①設(shè)兩條直線和的斜率分別為和,則有這里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要條件)4. 直線的交角:⑴直線到的角(方向角);直線到的角,是指直線繞交點(diǎn)依逆時(shí)針方向旋轉(zhuǎn)到與重合時(shí)所轉(zhuǎn)動(dòng)的角,它的范圍是,當(dāng)時(shí).⑵兩條相交直線與的夾角:兩條相交直線與的夾角,是指由與相交所成的四個(gè)角中最小的正角,又稱為和所成的角,它的取值范圍是,當(dāng),則有.5. 過兩直線的交點(diǎn)的直線系方程為參數(shù),不包括在內(nèi))6. 點(diǎn)到直線的距離:⑴點(diǎn)到直線的距離公式:設(shè)點(diǎn),直線到的距離為,則有.注:1. 兩點(diǎn)P1(x1,y1)、P2(x2,y2)的距離公式:.特例:點(diǎn)P(x,y)到原點(diǎn)O的距離:2. 定比分點(diǎn)坐標(biāo)分式。 3)定義法, 4)待定系數(shù)法. 高中數(shù)學(xué)第八章圓錐曲線方程考試內(nèi)容:數(shù)學(xué)探索169。(4)了解圓錐曲線的初步應(yīng)用. 167。Rx179。數(shù)學(xué)探索169。(7)了解棱柱的概念,掌握棱柱的性質(zhì),會(huì)畫直棱柱的直觀圖.?dāng)?shù)學(xué)探索169。.直線和平面垂直的判定.三垂線定理及其逆定理.?dāng)?shù)學(xué)探索169。(1)掌握平面的基本性質(zhì)。(8)了解多面體、凸多面體的概念。09. 立體幾何 知識(shí)要點(diǎn)一、 平面.1. 經(jīng)過不在同一條直線上的三點(diǎn)確定一個(gè)面.注:兩兩相交且不過同一點(diǎn)的四條直線必在同一平面內(nèi).2. 兩個(gè)平面可將平面分成3或4部分.(①兩個(gè)平面平行,②兩個(gè)平面相交)3. 過三條互相平行的直線可以確定1或3個(gè)平面.(①三條直線在一個(gè)平面內(nèi)平行,②三條直線不在一個(gè)平面內(nèi)平行)[注]:三條直線可以確定三個(gè)平面,三條直線的公共點(diǎn)有0或1個(gè).4. 三個(gè)平面最多可把空間分成 8 部分.(X、Y、Z三個(gè)方向)二、 空間直線.1. 空間直線位置分三種:相交、平行、異面. 相交直線—共面有反且有一個(gè)公共點(diǎn);平行直線—共面沒有公共點(diǎn);異面直線—不同在任一平面內(nèi)[注]:①兩條異面直線在同一平面內(nèi)射影一定是相交的兩條直線.()(可能兩條直線平行,也可能是點(diǎn)和直線等)②直線在平面外,指的位置關(guān)系:平行或相交③若直線a、b異面,a平行于平面,b與的關(guān)系是相交、平行、在平面內(nèi).④兩條平行線在同一平面內(nèi)的射影圖形是一條直線或兩條平行線或兩點(diǎn).⑤在平面內(nèi)射影是直線的圖形一定是直線.()(射影不一定只有直線,也可以是其他圖形)⑥在同一平面內(nèi)的射影長(zhǎng)相等,則斜線長(zhǎng)相等.()(并非是從平面外一點(diǎn)向這個(gè)平面所引的垂線段和斜線段)⑦是夾在兩平行平面間的線段,若,則的位置關(guān)系為相交或平行或異面.2. 異面直線判定定理:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線和平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線.(不在任何一個(gè)平面內(nèi)的兩條直線)3. 平行公理:平行于同一條直線的兩條直線互相平行.4. 等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等(如下圖). (二面角的取值范圍) (直線與直線所成角) (斜線與平面成角) (直線與平面所成角)(向量與向量所成角推論:如果兩條相交直線和另兩條相交直線分別平行,那么這兩組直線所成銳角(或直角)相等.5. 兩異面直線的距離:公垂線的長(zhǎng)度.空間兩條直線垂直的情況:相交(共面)垂直和異面垂直.是異面直線,則過外一點(diǎn)P,過點(diǎn)P且與都平行平面有一個(gè)或沒有,但與距離相等的點(diǎn)在同一平面內(nèi). (或在這個(gè)做出的平面內(nèi)不能叫與平行的平面)三、 直線與平面平行、直線與平面垂直.1. 空間直線與平面位置分三種:相交、平行、在平面內(nèi).2. 直線與平面平行判定定理:如果平面外一條直線和這個(gè)平面內(nèi)一條直線平行,那么這條直線和這個(gè)平面平行.(“線線平行,線面平行”)[注]:①直線與平面內(nèi)一條直線平行,則∥. ()(平面外一條直線)②直線與平面內(nèi)一條直線相交,則與平面相交. ()(平面外一條直線)③若直線與平面平行,則內(nèi)必存在無數(shù)條直線與平行. (√)(不是任意一條直線,可利用平行的傳遞性證之)④兩條平行線中一條平行于一個(gè)平面,那么另一條也平行于這個(gè)平面. ()(可能在此平面內(nèi))⑤平行于同一直線的兩個(gè)平面平行.()(兩個(gè)平面可能相交)⑥平行于同一個(gè)平面的兩直線平行.()(兩直線可能相交或者異面)⑦直線與平面、所成角相等,則∥.()(、可能相交)3. 直線和平面平行性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行.(“線面平行,線線平行”)4. 直線與平面垂直是指直線與平面任何一條直線垂直,過一點(diǎn)有且只有一條直線和一個(gè)平面垂直,過一點(diǎn)有且只有一個(gè)平面和一條直線垂直. l 若⊥,⊥,得⊥(三垂線定理),得不出⊥. 因?yàn)椤?,但不垂直O(jiān)A.l 三垂線定理的逆定理亦成立.直線與平面垂直的判定定理一:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這兩條直線垂直于這個(gè)平面.(“線線垂直,線面垂直”)直線與平面垂直的判定定理二:如果平行線中一條直線垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面.推論:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行.[注]:①垂直于同一平面的兩個(gè)平面平行.()(可能相交,垂直于同一條直線的兩個(gè)平面平行)②垂直于同一直線的兩個(gè)平面平行.(√)(一條直線垂直于平行的一個(gè)平面,必垂直于另一個(gè)平面)③垂直于同一平面的兩條直線平行.(√)5. ⑴垂線段和斜線段長(zhǎng)定理:從平面外一點(diǎn)向這個(gè)平面所引的垂線段和斜線段中,①射影相等的兩條斜線段相等,射影較長(zhǎng)的斜線段較長(zhǎng);②相等的斜線段的射影相等,較長(zhǎng)的斜線段射影較長(zhǎng);③垂線段比任何一條斜線段短.[注]:垂線在平面的射影為一個(gè)點(diǎn). [一條直線在平面內(nèi)的射影是一條直線.()]⑵射影定理推論:如果一個(gè)角所在平面外一點(diǎn)到角的兩邊的距離相等,那么這點(diǎn)在平面內(nèi)的射影在這個(gè)角的平分線上四、 平面平行與平面垂直.1. 空間兩個(gè)平面的位置關(guān)系:相交、平行.2. 平面平行判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,哪么這兩個(gè)平面平行.(“線面平行,面面平行”)推論:垂直于同一條直線的兩個(gè)平面互相平行;平行于同一平面的兩個(gè)平面平行.[注]:一平面間的任一直線平行于另一平面.3. 兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平面平行同時(shí)和第三個(gè)平面相交,那么它們交線平行.(“面面平行,線線平行”)4. 兩個(gè)平面垂直性質(zhì)判定一:兩個(gè)平面所成的二面角是直二面角,則兩個(gè)平面垂直.兩個(gè)平面垂直性質(zhì)判定二:如果一個(gè)平面與一條直線垂直,那么經(jīng)過這條直線的平面垂直于這個(gè)平面.(“線面垂直,面面垂直”)注:如果兩個(gè)二面角的平面對(duì)應(yīng)平面互相垂直,則兩個(gè)二面角沒有什么關(guān)系.5. 兩個(gè)平面垂直性質(zhì)定理:如果兩個(gè)平面垂直,那么在一個(gè)平面內(nèi)垂直于它們交線的直線也垂直于另一個(gè)平面.推論:如果兩個(gè)相交平面都垂直于第三平面,則它們交線垂直于第三平面.證明:如圖,找O作OA、OB分別垂直于,因?yàn)閯t. 6. 兩異面直線任意兩點(diǎn)間的距離公式:(為銳角取加,為鈍取減,綜上,都取加則必有)7. ⑴最小角定理:(為最小角,如圖)⑵最小角定理的應(yīng)用(∠PBN為最小角)簡(jiǎn)記為:成角比交線夾角一半大,且又比交線夾角補(bǔ)角一半長(zhǎng),一定有4條.成角比交線夾角一半大,又比交線夾角補(bǔ)角小,一定有2條.成角比交線夾角一半大,又與交線夾角相等,一定有3條或者2條.成角比交線夾角一半小,又與交線夾角一半小,一定有1條或者沒有. 五、 棱錐、棱柱.1. 棱柱.⑴①直棱柱側(cè)面積:(為底面周長(zhǎng),是高)該公式是利用直棱柱的側(cè)面展開圖為矩形得出的.②斜棱住側(cè)面積:(是斜棱柱直截面周長(zhǎng),是斜棱柱的側(cè)棱長(zhǎng))該公式是利用斜棱柱的側(cè)面展開圖為平行四邊形得出的.⑵{四棱柱}{平行六面體}{直平行六面體}{長(zhǎng)方體}{正四棱柱}{正方體}.{直四棱柱}{平行六面體}={直平行六面體}.⑶棱柱具有的性質(zhì):①棱柱的各個(gè)側(cè)面都是平行四邊形,所有的側(cè)棱都相等;直棱柱的各個(gè)側(cè)面都是矩形;正棱柱的各個(gè)側(cè)面都是全等的矩形.②棱柱的兩個(gè)底面與平行于底面的截面是對(duì)應(yīng)邊互相平行的全等多邊形.③過棱柱不相鄰的兩條側(cè)棱的截面都是平行四邊形.注:①棱柱有一個(gè)側(cè)面和底面的一條邊垂直可推測(cè)是直棱柱. ()(直棱柱不能保證底面是鉅形可如圖)②(直棱柱定義)棱柱有一條側(cè)棱和底面垂直.⑷平行六面體:定理一:平行六面體的對(duì)角線交于一點(diǎn),并且在交點(diǎn)處互相平分.[注]:四棱柱的對(duì)角線不一定相交于一點(diǎn).定理二:長(zhǎng)方體的一條對(duì)角線長(zhǎng)的平方等于一個(gè)頂點(diǎn)上三條棱長(zhǎng)的平方和.推論一:長(zhǎng)方體一條對(duì)角線與同一個(gè)頂點(diǎn)的三條棱所成的角為,則.推論二:長(zhǎng)方體一條對(duì)角線與同一個(gè)頂點(diǎn)的三各側(cè)面所成的角為,則.[注]:①有兩個(gè)側(cè)面是矩形的棱柱是直棱柱.()(斜四面體的兩個(gè)平行的平面可以為矩形)②各側(cè)面都是正方形的棱柱一定是正棱柱.()(應(yīng)是各側(cè)面都是正方形的直棱柱才行)③對(duì)角面都是全等的矩形的直四棱柱一定是長(zhǎng)方體.()(只能推出對(duì)角線相等,推不出底面為矩形)④棱柱成為直棱柱的一個(gè)必要不充分條件是棱柱有一條側(cè)棱與底面的兩條邊垂直. (兩條邊可能相交,可能不相交,若兩條邊相交,則應(yīng)是充要條件)2. 棱錐:棱錐是一個(gè)面為多邊形,其余各面是有一個(gè)公共頂點(diǎn)的三角形.[注]:①一個(gè)棱錐可以四各面都為直角三角形.②一個(gè)棱柱可以分成等體積的三個(gè)三棱錐;所以.⑴①正棱錐定義:底面是正多邊形;頂點(diǎn)在底面的射影為底面的中心.[注]:i. 正四棱錐的各個(gè)側(cè)面都是全等的等腰三角形.(不是等邊三角形)ii. 正四面體是各棱相等,而正三棱錐是底面為正△側(cè)棱與底棱不一定相等iii. 正棱錐定義的推論:若一個(gè)棱錐的各個(gè)側(cè)面都是全等的等腰三角形(即側(cè)棱相等);底面為正多邊形.②正棱錐的側(cè)面積:(底面周長(zhǎng)為,斜高為)③棱錐的側(cè)面積與底面積的射影公式:(側(cè)面與底面成的二面角為)附: 以知⊥,為二面角. 則①,②,③ ①②③得.注:S為任意多邊形的面積(可分別多個(gè)三角形的方法).⑵棱錐具有的性質(zhì):①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1