【摘要】平面向量單元復(fù)習(xí)題(一)一、選擇題(本大題共10小題,每小題5分,共50分)1.下列命題正確的是()a,b滿足|a|>|b|且a與b同向,則a>ba、b,
2025-01-09 16:02
【摘要】第三節(jié)平面向量的數(shù)量積及平面向量的應(yīng)用舉例基礎(chǔ)梳理(1)定義已知兩個(gè)向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時(shí),夾角θ=
2025-11-03 16:44
【摘要】給出命題:已知、為實(shí)數(shù),若,、否命題、逆否命題三個(gè)命題中,真命題的個(gè)數(shù)是 答案:C來源:09年福建師大附中月考一題型:選擇題,難度:中檔判斷下列命題的真假性:①.若m0,則方程x2-x+m=0有實(shí)根②.若x1,y1,則x+y2的逆命題③.對(duì)任意的x∈{x|-
2025-01-14 05:27
【摘要】(文)已知向量與互相垂直,其中(1)求和的值(2)若,,求的值答案:【解析】(1),,即又∵,∴,即,∴又 ,(2)∵,,即又,∴.來源:09年高考廣東卷題型:解答題,難度:容易求證:(cos108°-isin108°)(cos7
2025-01-15 09:16
【摘要】啟東中學(xué)內(nèi)部資料請(qǐng)注意保存,嚴(yán)禁外傳!啟東中學(xué)內(nèi)部資料11.(2020全國卷Ⅰ理)設(shè)集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合?()uABI中的元素共有()A.3個(gè)B.4個(gè)C.5個(gè)
2025-08-13 16:14
【摘要】1/41橢圓標(biāo)準(zhǔn)方程典型例題例1已知橢圓06322???mymx的一個(gè)焦點(diǎn)為(0,2)求m的值.分析:把橢圓的方程化為標(biāo)準(zhǔn)方程,由2?c,根據(jù)關(guān)系222cba??可求出m的值.解:方程變形為12622??myx.因?yàn)榻裹c(diǎn)在y軸上,所以62?m,解得3?m.又2?c,所以22
2025-08-02 10:18
【摘要】平面向量基本定理一、問題情境(1)如何求此時(shí)豎直和水平方向速度?(2)利用什么法則?BAMN探究:給定平面內(nèi)兩個(gè)向量、,平面內(nèi)任一向量是否都可以在這兩向量方向上分解呢?分解平移共同起點(diǎn)OAB?鏈接幾何畫板平面向量基本定理
2025-11-03 17:12
【摘要】向量的坐標(biāo)表示平面向量基本定理一、填空題1.若e1,e2是平面內(nèi)的一組基底,則下列四組向量能作為平面向量的基底的是________.①e1-e2,e2-e1②2e1+e2,e1+2e2③2e2-3e1,6e1-4e2④e1+e2,e1-e22.下面三種說法中,正確的是________.①一個(gè)平面
2024-12-05 10:15
【摘要】高中數(shù)學(xué)必修四平面向量參考復(fù)習(xí)題答案
2025-01-14 09:45
【摘要】課題:平面向量復(fù)習(xí)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】通過本章的復(fù)習(xí),對(duì)知識(shí)進(jìn)行一次梳理,突出知識(shí)間的內(nèi)在聯(lián)系,提高綜合運(yùn)用向量知識(shí)解決問題的能力。【課前預(yù)習(xí)】1、已知向量a=(5,10),b=(3,4)??,則(1)2a+b=,a
2024-12-05 03:24
【摘要】當(dāng)時(shí),0??與同向,ba且是的倍;||b||a?當(dāng)時(shí),0??與反向,ba且是的倍;||b||a||?當(dāng)時(shí),0??0b?,且。||0
2025-10-31 03:31
【摘要】平面向量的坐標(biāo)運(yùn)算鄭德松平面向量的坐標(biāo)運(yùn)算霞浦第一中學(xué)1234-1-5-2-3-4xy501234-1-2-3-4o問題:若已知=(1,3),=(5,1),
【摘要】2020/12/19向量的加法看書P80~83(限時(shí)6分鐘)學(xué)習(xí)目標(biāo):通過實(shí)例,掌握向量的加法運(yùn)算及理解其幾何意義。熟練運(yùn)用加法的“三角形法則”和“平行四邊形”法則2020/12/19由于大陸和臺(tái)灣沒有直航,因此要從臺(tái)灣去上海探親,乘飛機(jī)要先從臺(tái)北到香港,再從香港到上海,這兩次位移
【摘要】1.掌握向量的定義,向量和數(shù)量的區(qū)別。2.通過力和力的分析實(shí)例,了解向量的實(shí)際背景。3.掌握向量表示,零向量和單位向量。4.平行向量、共線向量、相等向量的定義。平面向量一看書P82~84(限時(shí)5分鐘)學(xué)習(xí)目標(biāo)1.什么是向量?向量和數(shù)量有何不同?向量:即有大小又有方向的量(數(shù)量:只有大小,沒有方向的量)
2025-10-31 00:53
【摘要】由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何的許多性質(zhì),如平移、全等、相似、長度、夾角都可以由向量的線性運(yùn)算及數(shù)量積表示出來,因此,利用向量方法可以解決平面幾何中的一些問題。平面幾何中的向量方法例1、證明平行四邊形四邊平方和等于兩對(duì)角線平方和ABDC已知:平行四邊形ABCD。求證:
2025-08-01 17:29