【正文】
定性(這里測試彼此都相似)就呈現(xiàn)出來。 “快速”技術(shù)被廣泛應(yīng)用于汽輪機的掌控中,它是通過用上線或下線工具獲得,可用于各方面,如作為一種調(diào)查工具,一個測試臨床系統(tǒng),一種支持地面工作的工具,一種水上監(jiān)控系統(tǒng)和一種快速管理工具。 AE發(fā)射器的安置 亞琛工業(yè)大學(xué)注意到原聲發(fā)射器位置的改變要選測試 77,也同時被調(diào)整以便其先于接下來的測試,從 AE數(shù)據(jù)到可以看出 AE方式一直持續(xù)到測試 84之后,所以: AE被認(rèn)為不適合測試 176只記錄“白噪聲”(整個頻段內(nèi)的噪聲) AE被認(rèn)為是可以被用于測試 77到 83,但可能不太正常 裝置的位置時刻在改變,從而導(dǎo)致實現(xiàn)方式的多樣化。在這一階段, AE頻率持續(xù)增加, X和 Z方向的加速度隨著鉆削加工的進(jìn)行而增加,以此同時, y方向的加速度基本上保持為 0(在整個測試中 y方向加速度基本為 0) 在 t=38秒時,鉆頭通過靜態(tài)磁盤的后邊緣, SP的值一直增加,直到 t=44秒時。通常達(dá)成最高的頻率 (在這里 , 大約 仟赫與最高在 仟赫 ) 圖 3 表示的是一些相同的測試,這些測試它們的能量小于 除了。放在大空間里的數(shù)據(jù)可以被放在 2維空間里原先就被分開放的數(shù)據(jù)在處 理結(jié)束后仍然被分開放。 通過 sp渠道,一種啟發(fā)式運算法則被用于將自動分割技術(shù)分成三塊,就像圖6描述的一樣, (表演低途徑過濾 SP 的版本重疊在那之上最初的信號當(dāng)做一紅色的線 ) 該三步識別分別如下 : 第一步 : 鉆削的起始時期差不多能量不變 (或些微地減退 ) ; 第二步 : 在鉆頭通過磁盤并不斷移動的時期,此時能量做大; 第三步 : 縮進(jìn)時的能量穩(wěn)定時期。 為了把大量的可得抽取樣品減為用于構(gòu)建的適量的數(shù)據(jù),一個數(shù)據(jù)組的摘要是必須的。 圖表 2在移除 50HZ電源干擾信號后測試 19的能量光譜圖上邊區(qū)域顯示的是每一個光譜的三維空間 .底部區(qū)域顯示的是相同的信息 ,都是表示隨著由黑色到紅色顏色的增加信號的能量也在增加 . 圖表 3在移除所有低于最低能量的光譜成分后 ,所得的測試 19的能量譜 圖表 4在移除低電源頻率成分前繪制的 AZ時間 (以秒為單位 )圖 圖表 5在移除低電源頻率成分后繪制的 AZ時間 (以秒為單位 )圖 7 分析方法 1可視化分析 這一節(jié)描述的是適合機械加工過程的四種方法的第一種。 SP的值在 這階段下降(可由斷電瞬間看到)此時三個方向加速度以及 AE值都接近于0. 6 預(yù)處理 移除開始 /終止瞬態(tài)數(shù)據(jù) 假設(shè)正常和不正常的系統(tǒng)行為都能從鉆削加工過程中的數(shù)據(jù)資料尋跡到 .在分析之前 ,每次測試都被縮短 ,僅留下在開始和終止之間的數(shù)據(jù) ,這表現(xiàn)在 SP 值的瞬變中 .比如說 ,在圖 1中所示 ,相應(yīng)的保留了 [1350]測試 . 移除電源干擾信號 50HZ 的電源干擾信號在每個渠道里都會出現(xiàn) .在分析之前 ,必須在 [4951]測試中的頻率段使用過濾器來進(jìn)行移除 . 頻率轉(zhuǎn)換 每個測試的數(shù)據(jù)被分在由 4096 個點組成的窗口中 ,一個包含 4096 個點的傅立葉變化在每個窗口中發(fā)生 ,用于 X,Y,Z加速度渠道 ,這種 1秒接近 5次的數(shù)據(jù)變化 ,同 ” 快速 ” 系統(tǒng)中的空間分析相似 ,提供了足夠的解決方法去鑒定象征系統(tǒng)異常的以頻率為基礎(chǔ)的事件 . 對于在這調(diào)查中的分析 , x,y,z方向所有的光譜成分 , 都發(fā)生在 f頻率以下那些能量低于 pf的將被丟棄。 當(dāng)鉆軸電力供應(yīng)發(fā)生一個短暫的插入時,鉆頭的供電和斷電將會在開始和結(jié)尾時,被觀察到。 4 詞匯 AUT亞琛工業(yè)大學(xué) GMM高斯混合模型 MIP復(fù)合層識別 OBS牛津信號分析機構(gòu) 5 數(shù)據(jù)描述 以下各節(jié)提供了由可視觀察所獲得的一個簡明的概述。 已提供的快速拓寬分析可能是用這個調(diào)查得考慮到的技術(shù)取分析。這種方法也針對正常的系統(tǒng)特性建立數(shù)學(xué)模型,結(jié)果證明該觀察運用的是原始方法。在這些測試過程中,這種方法在這些資料中能夠觀察到的主要方面提供了幾個截然不同的運作模式。 AE is assumed to be usable for tests [94190] –the sensor position is held constant during these tests. Thus, the range of tests assumed to be normal [10110] should be reduced to [84110] when AE is considered. Test Description Data recorded for during a typical test are shown in Figure 1. The duration of this test is approximately t=51 seconds. This section uses this test to illustrate a typical process, as described by AUT. Drill poweron and poweroff events may be seen at the start and end of the test as transient spikes in SP. The drill unit is then moved towards the static disk at the constant feed rata specified in Table 1, between t=12 and 27 seconds. This corresponds to approximately constant values of SP during that period, approximately zero AE, and very lowamplitude acceleration in x,y,and z planes. At t=27 seconds, the drill makes contact with the static disk and begins to drill into the metal. This corresponds to a stepchange in SP to a higher lever, staying approximately constant until t=38 seconds. During this time, AE increases significantly to a largely constant but nonzero value. The values Ax and Az increase throughout this drilling operation, while the value of Ay remains approximately zero (as it does throughout the test). At t=38 seconds, the tip of the drillbit passes through the rear face of the disk. The value of SP increases until t=44 seconds. During this period, AE reaches correspondingly high values, while Ax and Az decrease in amplitude. At t=44 seconds, the direction of the drill unit is reversed, and the drill is retracted from the metal disk. Until t=46 seconds, the value of SP and AE decrease rapidly. A transient is observed in Ax and Az at t =44 seconds, with vibration amplitude decreasing until t=46 seconds. At t=46 seconds, the drillbit has been pletely retracted from the metal disk, and the unit continues to be withdrawn at the feed rate until the end of the test. The value of SP decreases during this period(noting the poweroff transient at the very end of the test), while the values of all three acceleration channels and AE are approximately zero. 6 .Preprocessing Removal of Start/Stop Transients Assuming that normal and abnormal system behaviour will be evident from data acquired during the drilling process, prior to analysis, each test was shortened by retaining only data between the start and stop events, shown as transients in SP. For example, for the test shown in Figure 1, this corresponds to retaining the period [1350] seconds. Removal of Power Supply Signal The 50 Hz power supply appears with in each channel, and was removed prior to analysis by application of a bandstop filter with stopband [4951] Hz. Frequency Transformation Data for each test were divided into windows of 4096 points. A 4096point FFT for was performed using data within each window, for Ax,Ay and Az channels. This corresponds to approximately 5 FFTs per second of data, similar to the QUICK system used in aerospace analysis, shown to provide sufficient resolution for identifying frequencybased events indicative of system abnormality. For the analyses performed in this investigation, all spectral ponents of Ax, Ay, and Ay occurring at frequency f with power Pf below some threshold Pfh were discarded. Timedomain signals were reconstructed by performing an inverse FFT operation on each spectral window of 4096 points. Figure 2 shows the spectral power content of Az for Test 19 after removal of the 50 Hz power supply signal, from [021] seconds, with each FFT shown between [0 fs/2] Hz. Frequency content throughout this test is typical for all tests: the majority of significant spectral peaks are concentrated during the drilling operation(between 14 and 21 seconds, in this test). As a hole is drilled in the