【正文】
ve power source is continuously achieving greater popularity especially since the realisation of fossil fuel‘s shortings. Renewable energy in the form of electricity has been in use to some degree as long as 75 or 100 years ago. Sources such as Solar, Wind, Hydro and Geothermal have all been utilised with varying levels of success. The most widely used are hydro and wind power, with solar power being moderately used worldwide. This can be attributed to the relatively high cost of solar cells and their low conversion efficiency. Solar power is being heavily researched, and solar energy costs have now reached within a few cents per kW/h of other forms of electricity generation, and will drop further with new technologies such as titaniumoxide cells. With a peak laboratory efficiency of 32% and average efficiency of 1520%, it is necessary to recover as much energy as possible from a solar power system. This includes reducing inverter losses, storage losses, and light gathering losses. Light gathering is dependent on the angle of incidence of the light source providing power (. the sun) to the solar cell‘s surface, and the closer to perpendicular, the greater the power . If a flat solar panel is mounted on level ground, it is obvious that over the course of the day the sunlight will have an angle of incidence close to 90176。 as possible. By tilting the solar panel to continuously face the sun, this can be achieved. This process of sensing and following the position of the sun is known as Solar Tracking. It was resolved that realtime tracking would be necessary to follow the sun effectively, so that no external data would be required in operation. II. THE SENSING ELEMENT AND S IGNAL PROCESSING Many different methods have been proposed and used to track the position of the sun. The simplest of all uses an LDR – a Light Dependent Resistor to detect light intensity changes on the surface of the resistor. Other methods, such as that published by Jeff Damm in ?Home Power‘ [8], use two phototransistors covered with a small plate to act as a shield to sunlight, as shown in Fig. 1. Fi g. 1 Alternative solar tracking method When morning arrives, the tracker is in state A from the previous day. The left phototransistor is turned on, causing a signal to turn the motor continuously until the shadow from the plate returns the tracker to state B. As the day slowly progresses, state C is reached shortly, turning on the right phototransistor. The motor turns until state B is reached again, and the cycle continues until the end of the day, or until the minimum detectable light level is reached. The problem with a design like this is that phototransistors have a narrow range of sensitivity, once they have been set up in a circuit under set bias was because of this fact that solar cells themselves were chosen to be the sensing devices. They provide an excellent mechanism in light intensity detection – because they are sensitive to varying light and provide a nearlinear voltage range that can be used to an advantage in determining the present declination or angle to the a 5 result, a simple triangular setup was proposed, with the two solar cells facing opposite directions, as shown in Fig. 2. Fig. 2 Setup of solar reference cells Fig. 3 Solar reference cells at rest position In its rest position, the solar cells both receive an equal amount of sunlight, as the angle of incidence, although not 90 176。 煤 、 石油和天然氣都是可以利用的能源 , 這些能源都是過去的生 物體在太陽光能源的作用下生成復(fù)雜的存儲這些能源有機(jī)分子結(jié)構(gòu)經(jīng)過長時間的壓 縮集中后生成的。 其開采地比煤炭更為集中因此 對環(huán)境的破壞要少 , 其燃燒產(chǎn)生的污染物要比煤炭少 , 而且石油可以很容易的通過管 道進(jìn)行運(yùn)輸。 美國和其他工業(yè)化國家一直受到 通貨膨脹 、 經(jīng)濟(jì)衰退 、 大批的失業(yè)和工業(yè)設(shè)備的過時的困擾 。 能源工程師的第一個提議是想辦法減少能源的消耗同時保證產(chǎn)量不變甚至有所 2 統(tǒng)恢復(fù)更多能量。 太陽能滿足這些標(biāo)準(zhǔn) , 其產(chǎn) 生的多余的熱量會從地球輻射出去 。 這種方式目前最簡單的設(shè)計是蒸汽發(fā)電裝置 , 收集到的太陽能通過管道中的載熱氣體 進(jìn)行輸送。 在太陽能能在全 球范圍內(nèi)使 用 的前提下 , 最廣泛使用的卻是水能和風(fēng)能 。 就在這一天繼 續(xù) 向黃昏走去時 ,相反的事情發(fā)生了 ,隨著角度的增大 , 轉(zhuǎn)化效率向 最小值邁進(jìn)。 接著電機(jī)轉(zhuǎn) 動,直到再次達(dá)到 B 狀態(tài),并循環(huán)下去,直到一天結(jié)束,或直至達(dá)到最小可探測光 水平 。 這種現(xiàn)象會使得在每 一個單元中產(chǎn)生可檢測的信號,他可以通過合適的電路進(jìn)行處理。通過兩個單獨(dú)的電表分別檢測電路兩端的電壓和電流, 由此在每一個晴朗的日子里記錄下數(shù)據(jù),并且制作成一個 Excel 表格。 為了確保能量不被浪費(fèi) , 設(shè)備本身也監(jiān)測了電源本身的電流 。而真正的價值是:這表明可以顯著降低系統(tǒng)的整 體成本 , 并且可以通過耦合太陽能跟蹤裝置的太陽能電池板收集更多的能量 。驅(qū)動裝置是 從舊的安全攝像頭上拆下來的 , 步進(jìn)電機(jī)來自于舊的打印機(jī) 。 該設(shè)備 與 固定的太 陽能面板相比,多獲得超過 30%的太陽能。 太陽能跟蹤時迄今為止提高住宅和商業(yè)用戶使用太陽能發(fā)電系統(tǒng)的整體效 率的最簡單方法。許多商業(yè)單位制造一個跟蹤裝置并且?guī)в邢喈?dāng)質(zhì)量的面板需要花費(fèi) 2020 多美元。 通過使用這種方法, 太陽能跟蹤器能夠成功的使太陽光和太陽能電池板之間保持垂直 ??梢园l(fā)現(xiàn),在這樣的天氣條件下, 12 個小時時間里,面板平均提供了整體的39% 的輸出 , 即 。 第一個測試將面板從設(shè)備上拿下來 , 并且放置 在一個平面上 , 連接上一個匹配面板評級的輸出為 9W 的負(fù)載 。 因此一個簡單的帶有兩個方向相反的 太陽能電池板的三角形模型被制造出來,如圖所示 : 就如在圖 3 中所看到的情況一樣,太陽能電池板在其靜止位置時,雖然入射角并 不是 90176。為了更有效地跟隨太陽 ,實時跟蹤記錄是必要的 , 因此操作中不需要額外的數(shù)據(jù) 。 如果一個 平坦的太陽能板被安裝在水平地面 ,很明顯 ,在漫長的一天中陽光會有一個入射角接近 90176。太陽能電池板或者面板的使用越來越普遍, 特別是在那些電線不是怎么經(jīng)濟(jì)可行的偏遠(yuǎn)地區(qū) 。 當(dāng)然 , 亞 利 桑那州的許多居民渴不喜歡國家大力發(fā) 展太陽能的收集 , 而且一些環(huán)保組織也因為太陽能的收集對響尾蛇的生活習(xí)性等產(chǎn)生 的影響而抗議太陽