freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

福州中考數(shù)學備考之二次函數(shù)壓軸突破訓練∶培優(yōu)篇(存儲版)

2025-04-02 05:17上一頁面

下一頁面
  

【正文】 點A(0,2),B(2,2),C(1,2),拋物線F:y=x22mx+m22與直線x=2交于點P.(1)當拋物線F經(jīng)過點C時,求它的解析式;(2)設點P的縱坐標為yP,求yP的最小值,此時拋物線F上有兩點(x1,y1),(x2,y2),且x1<x2≤2,比較y1與y2的大小.【答案】(1) ;(2).【解析】【分析】(1)根據(jù)拋物線F:y=x22mx+m22過點C(1,2),可以求得拋物線F的表達式;(2)根據(jù)題意,可以求得yP的最小值和此時拋物線的表達式,從而可以比較y1與y2的大小.【詳解】(1) ∵拋物線F經(jīng)過點C(-1,-2),∴. ∴m1=m2=1. ∴拋物線F的解析式是. (2)當x=2時,=. ∴當m=2時,的最小值為-2. 此時拋物線F的表達式是. ∴當時,y隨x的增大而減小.  ∵≤-2,∴.【點睛】本題考查二次函數(shù)的性質、二次函數(shù)圖象上點的坐標特征、待定系數(shù)法求二次函數(shù)解析式,解題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答問題.6.如圖1,在矩形ABCD中,DB=6,AD=3,在Rt△PEF中,∠PEF=90176?!逜M⊥BC,∴△AMB為等腰直角三角形,∴AM=AB=4=2,∵以點A,M,P,Q為頂點的四邊形是平行四邊形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x軸交直線BC于D,如圖1,則∠PDQ=45176。AO=3,∴AG=QG=AQ=6,∠AGO=30176。=,∴AP=,PM=RM=,∴MC==,∴PC=CM﹣PM=,∵,∴CK=,PK=,∴OK=CK﹣CO=,∴點P坐標(﹣,),∴PA+PC+PG的最小值為,此時點P的坐標(﹣,).考點:二次函數(shù)綜合題;旋轉的性質;最值問題;壓軸題.14.如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點.(1)直接寫出點A的坐標,并求出拋物線的解析式;(2)動點P從點A出發(fā).沿線段AB向終點B運動,同時點Q從點C出發(fā),沿線段CD向終點D運動.速度均為每秒1個單位長度,⊥AB交AC于點E①過點E作EF⊥AD于點F,線段EG最長?②連接EQ.在點P、Q運動的過程中,判斷有幾個時刻使得△CEQ是等腰三角形?請直接寫出相應的t值.【答案】(1)點A的坐標為(4,8)將A (4,8)、C(8,0)兩點坐標分別代入y=ax2+bx得8=16a+4b0=64a+8b解得a=,b=4∴拋物線的解析式為:y=x2+4x(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=∴PE=AP=t.PB=8t.∴點E的坐標為(4+t,8t).∴點G的縱坐標為:(4+t)2+4(4+t)=t2+8.∴EG=t2+8(8t)=t2+t.∵<0,∴當t=4時,線段EG最長為2.②共有三個時刻:t1=, t2=,t3=.【解析】(1)根據(jù)題意即可得到點A的坐標,再由A、C兩點坐標根據(jù)待定系數(shù)法即可求得拋物線的解析式;(2)①在Rt△APE和Rt△ABC中,由tan∠PAE,即可表示出點E的坐標,從而得到點G的坐標,EG的長等于點G的縱坐標減去點E的縱坐標,得到一個函數(shù)關系式,根據(jù)函數(shù)關系式的特征即可求得結果;②考慮腰和底,分情況討論.15.如圖,已知拋物線過點A(,3) 和B(3,0),過點A作直線AC//x軸,交y軸與點C.(1)求拋物線的解析式; (2)在拋物線上取一點P,過點P作直線AC的垂線,垂足為D,連接OA,使得以A,D,P為頂點的三角形與△AOC相似,求出對應點P的坐標; (3)拋物線上是否存在點Q,使得?若存在,求出點Q的坐標;若不存在,請說明理由. 【答案】(1);(2)P點坐標為(4 ,6)或(, );(3)Q點坐標(3,0)或(2,15)【解析】【分析】(1)把A與B坐標代入拋物線解析式求出a與b的值,即可確定出解析式;(2)設P坐標為,表示出AD與PD,由相似分兩種情況得比例求出x的值,即可確定出P坐標;(3)存在,求出已知三角形AOC邊OA上的高h,過O作OM⊥OA,截取OM=h,與y軸交于點N,分別確定出M與N坐標,利用待定系數(shù)法求出直線MN解析式,與拋物線解析式聯(lián)立求出Q坐標即可.【詳解】(1)把,和點,代入拋物線得:,解得:,則拋物線解析式為;(2)當在直線上方時,設坐標為,則有,當時,即,整理得:,即,解得:,即或(舍去),此時,;當時,即,整理得:,即,解得:,即或(舍去),此時,;當點時,也滿足;當在直線下方時,同理可得:的坐標為,綜上,的坐標為,或,或,或;(3)在中,根據(jù)勾股定理得:, ,,邊上的高為,過作,截取,過作,交軸于點,如圖所示:在中,即,過作軸,在中,即,設直線解析式為,把坐標代入得:,即,即,聯(lián)立得:,解得:或,即,或,則拋物線上存在點,使得,此時點的坐標為,或,.【點睛】二次函數(shù)綜合題,涉及的知識有:待定系數(shù)法求函數(shù)解析式,相似三角形的判定與性質,點到直線的距離公式,熟練掌握待定系數(shù)法是解本題的關鍵.。后交y軸于點G,連接CG,如圖2,P為△ACG內(nèi)以點,連接PA、PC、PG,分別以AP、AG為邊,在他們的左側作等邊△APR,等邊△AGQ,連接QR①求證:PG=RQ;②求PA+PC+PG的最小值,并求出當PA+PC+PG取得最小值時點P的坐標.【答案】(1)b=﹣2,c=3;(2)M(,);(3)①證明見解析;②PA+PC+PG的最小值為,此時點P的坐標(﹣,).【解析】試題分析:(1)把A(﹣3,0),B(0,3)代入拋物線即可解決問題.(2)首先求出A、C、D坐標,根據(jù)BE=2ED,求出點E坐標,求出直線CE,利用方程組求交點坐標M.(3)①欲證明PG=QR,只要證明△QAR≌△GAP即可.②當Q、R、P、C共線時,PA+PG+PC最小,作QN⊥OA于N,AM⊥QC于M,PK⊥OA于K,由sin∠ACM==求出AM,CM,利用等邊三角形性質求出AP、PM、PC,由此即可解決問題.試題解析:(1)∵一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點,∴A(﹣3,0),B(0,3),∵拋物線過A、B兩點,∴,解得:,∴b=﹣2,c=3.(2),對于拋物線,令y=0,則,解得x=﹣3或1,∴點C坐標(1,0),∵AD=DC=2,∴點D坐標(﹣1,0),∵BE=2ED,∴點E坐標(,1),設直線CE為y=kx+b,把E、C代入得到:,解得:,∴直線CE為,由,解得或,∴點M坐標(,).(3)①∵△AGQ,△APR是等邊三角形,∴AP=AR,AQ=AG,∠QAC=∠RAP=60176。則△AMB為等腰直角三角形,所以AM=2,接著根據(jù)平行四邊形的性質得到PQ=AM=2,PQ⊥BC,作PD⊥x軸交直線BC于D,如圖1,利用∠PDQ=45176。福州中考數(shù)學備考之二次函數(shù)壓軸突破訓練∶培優(yōu)篇一、二次函數(shù)1.已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.【答案】(1)b=﹣2a,頂點D的坐標為(﹣,﹣);(2);(3) 2≤t<.【解析】【分析】
點擊復制文檔內(nèi)容
數(shù)學相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1