【摘要】第一篇:17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180 三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°推論1直角三角形的兩個銳角互余推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和推論3三角形的...
2025-10-12 14:26
【摘要】銳角三角形直角三角形鈍角三角形——有一個角是鈍角。三角形按角的分類——三個角都是銳角?!幸粋€角是直角。你能舉出生活中用到直角三角形的例子嗎?直角三角形用Rt△表示,如圖記作Rt△ABC,ACB直角邊斜邊直角邊∠C=Rt∠直角三角形
2025-08-01 14:23
【摘要】......小巨人學科教師輔導講義學生:謝仲鋮教師:趙常巨日期:2015/3/14家長簽名:課題三角形的證明教學目標1.能夠證明與三角形,線段
2025-04-16 12:49
【摘要】1、(2022四川綿陽)如圖,四邊形ABCD是菱形,對角線AC=8cm,BD=6cm,DH⊥AB于點H,且DH與AC交于G,求GH的長.解:∵四邊形ABCD是菱形∴AC⊥BD,AO=4cm,BO=3cm.cmBOAOAB522????DHABBDACS????21ABCD菱形?c
2025-07-23 21:07
【摘要】證明三角形全等的常見題型全等三角形是初中幾何的重要內(nèi)容之一,全等三角形的學習是幾何入門最關鍵的一步,這部分內(nèi)容學習的好壞直接影響著今后的學習。而一些初學的同學,雖然學習了幾種判定三角形全等的公理和推論,但往往仍不知如何根據(jù)已知條件證明兩個三角形全等。在輔導時可以抓住以下幾種證明三角形全等的常見題型,進行分析。一、已知一邊與其一鄰角對應相等1.證已知角的另一
2024-11-19 19:13
【摘要】第一篇:三角形中線長定理的趣用 三角形中線長定理的趣用 在初中平行四邊形、勾股定理與解三角形[1][2]教學中,教師一般都會介紹并證明如下結(jié)論: (2)本題將幾何問題代數(shù)化,、最重要的思想方法之...
2025-10-04 15:05
【摘要】解三角形正弦定理(一)正弦定理:,(2)推論:正余弦定理的邊角互換功能①,,②,,③==④典型例題:1.在△ABC中,已知,則∠B等于()A.B.C.D.2.在△ABC中,已知,則這樣的三角形有_____1____個.3.在△ABC中,若,求的值.解 由條
2025-07-24 11:23
【摘要】第1課時三角形內(nèi)角和定理的證明北師大版八年級上冊情景導入我們知道三角形三個內(nèi)角的和等于180°.你還記得這個結(jié)論的探索過程嗎?(1)如圖,當時我們是把∠A移到了∠1的位置,∠B移到了∠2的位置.如果不實際移動∠A和∠B,那么你還有其它方法可以達到同樣的效果嗎?已知:如圖,
2025-03-13 01:45
【摘要】第一篇:《三角形的中位線定理》教學反思 本節(jié)課我通過直接介紹三角形的中位線的定義,然后讓學生在手中三角形上畫出來,畫出后又去發(fā)現(xiàn)圖形中隱藏的中位線定理,學生經(jīng)過實際的操作,體會到了學數(shù)學和做數(shù)學的樂...
2025-10-06 01:22
【摘要】精品資源第19課三角形與全等三角形知識點:三角形,三角形的角平分線,中線,高線,三角形三邊間的不等關系,三角形的內(nèi)角和,三角形的分類,全等形,全等三角形及其性質(zhì),三角形全等判定大綱要求1.了解全等形,全等三角形的概念和性質(zhì),逆命題和逆定理的概念,理解三角形,三角形的頂點,邊,內(nèi)角,外角,角平分線,中線和高線,線段中垂線等概念。2.理解三角形的任意兩邊之和大于第
【摘要】三角形、全等三角形、軸對稱三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂
2025-07-24 01:22
【摘要】相似三角形解題方法、技巧、步驟、輔助線解析一、相似、全等的關系全等和相似是平面幾何中研究直線形性質(zhì)的兩個重要方面,全等形是相似比為1的特殊相似形,相似形則是全等形的推廣.因而學習相似形要隨時與全等形作比較、明確它們之間的聯(lián)系與區(qū)別;相似形的討論又是以全等形的有關定理為基礎.二、相似三角形(1)三角形相似的條件:①;②
2025-03-25 06:32
【摘要】相似三角形證明題,在中,,BD平分,試說明:AB·BC=AC·CD:ΔACB為等腰直角三角形,∠ACB=900延長BA至E,延長AB至F,∠ECF=1350求證:ΔEAC∽ΔCBF,點C、D在線段AB上,且ΔPCD是等邊三角形.(1)當AC,CD,DB滿足怎樣的關系時,ΔACP∽ΔPDB;
【摘要】作業(yè)布置評價小結(jié)鞏固練習講授新課復習判定兩個三角形全等要具備什么條件?
2024-11-09 03:54
2025-08-16 01:10