【摘要】a·b=|a||b|cosθ向量數(shù)量積的定義是?向量與自身的內(nèi)積為?兩個(gè)單位向量的數(shù)量積等于?向量長(zhǎng)度的平方它們之間夾角的余弦函數(shù)值思考?yxoP1βP2α在直角坐標(biāo)系中,以原點(diǎn)為中心,單位長(zhǎng)度為半徑作單位圓,以原點(diǎn)為頂點(diǎn),x軸為始邊分別作角任意α,β與單位圓交于
2025-11-08 15:05
【摘要】課題:數(shù)列(1)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】了解數(shù)列的概念、了解數(shù)列的分類、了解數(shù)列是一種特殊的函數(shù),會(huì)用圖象法的列表法表示數(shù)列.【課前預(yù)習(xí)】1.考察下面的問題:①某劇場(chǎng)有30排座位,第一排有20個(gè)座位,從第二排起,后一排都比前一排多2個(gè)
2024-11-20 01:05
【摘要】2.3.2向量的坐標(biāo)表示(1)【學(xué)習(xí)目標(biāo)】1、能正確的用坐標(biāo)來表示向量;2、能區(qū)分向量的坐標(biāo)與點(diǎn)的坐標(biāo)的不同;3、掌握平面向量的直角坐標(biāo)運(yùn)算4、提高分析問題的能力?!绢A(yù)習(xí)指導(dǎo)】1、一般地,對(duì)于向量a,當(dāng)它的起點(diǎn)移至_______時(shí),其終點(diǎn)的坐標(biāo)),(yx稱為向量a的(直角)
【摘要】2.4.1向量的數(shù)量積(1)【學(xué)習(xí)目標(biāo)】1.理解平面向量數(shù)量積的概念及其幾何意義2.掌握數(shù)量積的運(yùn)算法則3.了解平面向量數(shù)量積與投影的關(guān)系【預(yù)習(xí)指導(dǎo)】1.已知兩個(gè)非零向量a與b,它們的夾角為?,則把數(shù)量_________________叫做向量a與b的數(shù)量積(或內(nèi)積)。規(guī)定:零
2024-12-05 10:15
【摘要】同角三角函數(shù)的關(guān)系(1)【學(xué)習(xí)目標(biāo)】1、掌握同角三角函數(shù)的兩個(gè)基本關(guān)系式2、能準(zhǔn)確應(yīng)用同角三角函數(shù)關(guān)系進(jìn)行化簡(jiǎn)、求值3、對(duì)于同角三角函數(shù)來說,認(rèn)清什么叫“同角”,學(xué)會(huì)運(yùn)用整體觀點(diǎn)看待角4、結(jié)合三角函數(shù)值的符號(hào)問題,求三角函數(shù)值【重點(diǎn)難點(diǎn)】同角三角函數(shù)的兩個(gè)基本關(guān)系式和應(yīng)用【自主學(xué)習(xí)】一、數(shù)學(xué)
2024-11-20 01:06
【摘要】課題:向量的數(shù)乘(2)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、理解兩個(gè)向量共線的含義,并掌握向量共線定理;2、能運(yùn)用實(shí)數(shù)與向量的積解決有關(guān)問題?!菊n前預(yù)習(xí)】1、填空:(1)?||a??;(2)當(dāng)0??時(shí),a??與a?方向
2024-12-05 03:24
【摘要】?jī)山呛团c差的正弦、余弦、正切公式重點(diǎn):公式的應(yīng)用.難點(diǎn):公式的推導(dǎo)及變形應(yīng)用.六個(gè)公式的特征兩角和(差)的余弦:余余、正正、符號(hào)異(即公式右端分別是α與β的余弦之積,以及正弦之積,中間的符號(hào)與左邊相反);兩角和(差)的正弦:正余、余正、符號(hào)同;兩角和(差)的正切:分子同、分母異.它們的內(nèi)在聯(lián)系如下:一、和(差)角的余弦公式
2024-12-05 06:46
【摘要】課題兩角和與差的正弦、余弦、正切公式(二)教學(xué)目標(biāo)知識(shí)與技能理解以兩角差的余弦公式為基礎(chǔ)過程與方法推導(dǎo)兩角和、差正弦和正切公式的方法情感態(tài)度價(jià)值觀體會(huì)三角恒等變換特點(diǎn)的過程,理解推導(dǎo)過程,掌握其應(yīng)用重點(diǎn)兩角和、差正弦和正切公式的推導(dǎo)過程及運(yùn)用難點(diǎn)兩角和與差正弦、余弦和正切公式的
【摘要】課題兩角和與差的正弦、余弦、正切公式(一)教學(xué)目標(biāo)知識(shí)與技能理解以兩角差的余弦公式為基礎(chǔ),推導(dǎo)兩角和、差正弦和正切公式的方法過程與方法體會(huì)三角恒等變換特點(diǎn)的過程,理解推導(dǎo)過程,掌握其應(yīng)用情感態(tài)度價(jià)值觀聯(lián)想觀察分析靈活運(yùn)用公式重點(diǎn)兩角和、差正弦和正切公式的推導(dǎo)過程及運(yùn)用難點(diǎn)兩角和與差正弦
【摘要】數(shù)學(xué):“兩角差的余弦公式”教學(xué)設(shè)計(jì)一、教學(xué)內(nèi)容解析三角恒等變換處于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)和交匯點(diǎn)上,是前面所學(xué)三角函數(shù)知識(shí)的繼續(xù)與發(fā)展,是培養(yǎng)學(xué)生推理能力和運(yùn)算能力的重要素材.兩角差的余弦公式是《三角恒等變換》這一章的基礎(chǔ)和出發(fā)點(diǎn),公式的發(fā)現(xiàn)和證明是本節(jié)課的重點(diǎn),也是難點(diǎn).由于和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,我們可以
2025-11-09 21:26
【摘要】課題:三角函數(shù)誘導(dǎo)公式(2)班級(jí):姓名:一:學(xué)習(xí)目標(biāo)導(dǎo)公式;式的探求和運(yùn)用,培養(yǎng)化歸能力,提高學(xué)生分析問題和解決問題的能力.;二:課前預(yù)習(xí)(1)思想方法:從特殊到一般;數(shù)形結(jié)合思想;對(duì)稱變換思想;(2)規(guī)律:“奇變偶不變,符號(hào)看
2024-12-05 10:17
【摘要】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(一)1.能根據(jù)兩角差的余弦公式推導(dǎo)出兩角和與差的正弦公式及兩角和的余弦公式,并能利用公式進(jìn)行化簡(jiǎn)求值.(重點(diǎn))2.熟練掌握兩角和與差的正弦、余弦公式的特征和符號(hào)規(guī)律.(易混點(diǎn))3.能正用、逆用、變形用公式進(jìn)行化簡(jiǎn)求值.
2024-12-04 18:51
【摘要】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(二)1.能利用兩角和與差的正、余弦公式推導(dǎo)出兩角和與差的正切公式并能應(yīng)用.(重點(diǎn))2.能夠熟練地正用、逆用和變形應(yīng)用兩角和與差的正切公式.(重點(diǎn)、難點(diǎn))兩角和與差的正切公式做一做(1)已知tanα=1
【摘要】?jī)山呛团c差的余弦公式一.學(xué)習(xí)要點(diǎn):兩角和與差的余弦公式及其簡(jiǎn)單應(yīng)用。二.學(xué)習(xí)過程:1.兩角和與差的余弦公式及推導(dǎo):公式:
2024-11-27 23:39
【摘要】二倍角的三角函數(shù)(1)【學(xué)習(xí)目標(biāo)】、余弦、正切公式;、化簡(jiǎn)、恒等證明?!緦W(xué)習(xí)重點(diǎn)難點(diǎn)】[來重點(diǎn):;。難點(diǎn):理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù)?!緦W(xué)習(xí)過程】(一)預(yù)習(xí)指導(dǎo):、余弦、正切方式:sin(α+β)=(S???)cos