【摘要】課題雙曲線的簡(jiǎn)單性質(zhì)學(xué)習(xí)目標(biāo):...,在自主探究合作交流中通過類比,分析雙曲線的幾何性質(zhì).學(xué)習(xí)重點(diǎn):掌握雙曲線的簡(jiǎn)單幾何性質(zhì)學(xué)習(xí)難點(diǎn):能區(qū)別橢圓與雙曲線的性質(zhì)學(xué)習(xí)方法:以講學(xué)稿為依托的探究式教學(xué)方法。學(xué)習(xí)過程一、課前預(yù)習(xí)指導(dǎo):1、雙曲線的性質(zhì):
2025-11-09 18:59
【摘要】§雙曲線及其標(biāo)準(zhǔn)方程【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.從具體情境中抽象出雙曲線的模型2.理解雙曲線的定義;3.掌握雙曲線的標(biāo)準(zhǔn)方程.【重點(diǎn)】理解雙曲線的定義【難點(diǎn)】掌握雙曲線的標(biāo)準(zhǔn)方程一、自主學(xué)習(xí)(一)復(fù)
2025-11-19 23:00
【摘要】PF2F1§橢圓及其標(biāo)準(zhǔn)方程(1)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐。【學(xué)習(xí)目標(biāo)】1.從具體情境中抽象出橢圓的模型;2.掌握橢圓的定義;3.掌握橢圓的標(biāo)準(zhǔn)方程.【重點(diǎn)】理解橢圓的定義【難點(diǎn)】掌握橢圓的標(biāo)準(zhǔn)方程一、自主學(xué)習(xí)P3
2025-11-19 00:11
【摘要】空間向量的數(shù)乘運(yùn)算【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.掌握空間向量的數(shù)乘運(yùn)算律,能進(jìn)行簡(jiǎn)單的代數(shù)式化簡(jiǎn);2.理解共線向量定理和共面向量定理及它們的推論;3.能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問題.【重點(diǎn)】能用空間向量的運(yùn)算意義
2025-11-09 16:52
【摘要】直線與拋物線的位置關(guān)系(二)【學(xué)習(xí)目標(biāo)】解決直線與拋物線位置有關(guān)的簡(jiǎn)單問題,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想.【自主檢測(cè)】3x-4y-12=0上的拋物線標(biāo)準(zhǔn)方程是()(A)y2=16x或x2=16y(B)y2=16x或x2=12y(C)x2=-12y或y2=16x(D)x2=16y或
2025-11-10 23:25
【摘要】四種命題間的相互關(guān)系【學(xué)習(xí)目標(biāo)】掌握四種命題間的相互關(guān)系,會(huì)用等價(jià)命題判斷四種命題的真假.【自主學(xué)習(xí)】觀察下列四個(gè)命題:(1)若f(x)是正弦函數(shù),則f(x)是周期函數(shù).(2)若f(x)是周期函數(shù),則f(x)是正弦函數(shù).(3)若f(x)不是正弦函數(shù),則f(x)不是周期函數(shù).(4)若f(x)不是周
2025-11-26 06:41
【摘要】(一)【學(xué)習(xí)目標(biāo)】通過本節(jié)的學(xué)習(xí),能運(yùn)用性質(zhì)解決直線與拋物線位置有關(guān)的簡(jiǎn)單問題,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想.【自主學(xué)習(xí)】1、直線與拋物線的位置關(guān)系設(shè)直線:lykxb??,拋物線22(0)ypxp??,直線與拋物線的交點(diǎn)的個(gè)數(shù)等價(jià)于方程組22ykxbypx??????解的個(gè)數(shù),也等價(jià)于方程2
【摘要】全稱量詞與存在量詞【學(xué)習(xí)目標(biāo)】三、理解全稱量詞、存在量詞,能夠用符號(hào)表示全稱命題、特稱命題,并會(huì)判斷其真假.四、明確判斷全稱命題、特稱命題真假的判斷方法.【自主學(xué)習(xí)】1.全稱量詞、全稱命題(1)短語(yǔ)“”、“”在邏輯中通常叫做全稱量詞,用符號(hào)“______”表示,含有全稱量詞的命題叫做
【摘要】(五)【學(xué)習(xí)目標(biāo)】解決直線與拋物線位置有關(guān)的簡(jiǎn)單問題,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想.【典型例題】例A(2,8),B(x1,y1),C(x2,y2)在拋物線22(0)ypxp??上,△ABC的重心與此拋物線的焦點(diǎn)F重合.(1)寫出該拋物線的方程和焦點(diǎn)F的坐標(biāo);(2)求線段BC
【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)導(dǎo)數(shù)學(xué)案1新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時(shí)感悟【學(xué)習(xí)目標(biāo)】1.掌握導(dǎo)數(shù)的概念,導(dǎo)數(shù)公式及計(jì)算,導(dǎo)數(shù)在函數(shù)中的應(yīng)用。能夠用導(dǎo)數(shù)解決生活中的優(yōu)化問題。2.掌握定積分的概念,微積分基本定理及定積分的應(yīng)用。【學(xué)習(xí)重點(diǎn)】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用。【學(xué)習(xí)難點(diǎn)】導(dǎo)數(shù)在研究函
2025-11-10 17:30
【摘要】雙曲線的簡(jiǎn)單幾何性質(zhì)【學(xué)習(xí)目標(biāo)】理解并掌握雙曲線的幾何性質(zhì).【重點(diǎn)難點(diǎn)】雙曲線的幾何性質(zhì).雙曲線的幾何性質(zhì)【學(xué)習(xí)過程】一、自主預(yù)習(xí)(預(yù)習(xí)教材理P56~P58,文P49~P51找出疑惑之處)復(fù)習(xí)1:寫出滿足下列條件的雙曲線的標(biāo)準(zhǔn)方程:①3,4ab??,焦點(diǎn)在x軸上;②焦點(diǎn)在
2025-11-26 06:47
【摘要】拋物線的簡(jiǎn)單幾何性質(zhì)(1)【學(xué)習(xí)目標(biāo)】1.掌握拋物線的幾何性質(zhì);2.根據(jù)幾何性質(zhì)確定拋物線的標(biāo)準(zhǔn)方程.【重點(diǎn)難點(diǎn)】拋物線的幾何性質(zhì)【學(xué)習(xí)過程】一、自主預(yù)習(xí)P70,文P60~P61找出疑惑之處)復(fù)習(xí)1:準(zhǔn)線方程為x=2的拋物線的標(biāo)準(zhǔn)方程是.復(fù)習(xí)2:雙曲線22
【摘要】l:x+y-3=0,橢圓x24+y2=1,則直線與橢圓的位置關(guān)系是()A.相交B.相切C.相離D.相切或相交解析:選x+y-3=0代入x24+y2=1,得x24+(3-x)2=1,即5x2-24x+32=0.
【摘要】6x2+y2=6的長(zhǎng)軸端點(diǎn)坐標(biāo)為()A.(-1,0),(1,0)B.(-6,0),(6,0)C.(-6,0),(6,0)D.(0,-6),(0,6)解析:選y26+x2=1,∴a2=6,且焦點(diǎn)在y軸上.∴長(zhǎng)軸端點(diǎn)坐標(biāo)為(0,-6),
【摘要】圓錐曲線的方程與性質(zhì)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.掌握橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程;2.掌握橢圓、雙曲線、拋物線的幾何性質(zhì);【重點(diǎn)】橢圓、雙曲線、拋物線的定義、標(biāo)準(zhǔn)方程及幾何性質(zhì)【難點(diǎn)】橢圓、雙曲線、拋物線的定義、標(biāo)準(zhǔn)方程及幾何性質(zhì)一、
2025-11-10 06:26