【摘要】二次根式(2)教學過程一、復習1、什么叫二次根式?2、說出下列各式是二次根時,字母所應滿足的條件:x?,2x??,122?x,x?3。二、新授1、二次根式的簡單性質:(a)2=a(a≥0)。引導學生回答a能是一個代數(shù)式嗎?可以,不過是有條件的,即要保證被開方數(shù)為非負數(shù)。
2024-11-18 15:51
【摘要】下一頁上一頁末頁目錄首頁考點知識精講下一頁上一頁末頁目錄首頁考點訓練中考典例精析舉一反三考點知識精講下一頁上一頁末頁目錄首頁考
2025-01-12 23:17
【摘要】尚干中學林秀燕?叫做二次根式。式子)0(?aa:復習提問=aa(a≥0)2a??2a-a(a<0)==∣a∣(a≥0)思考:二次根式的除法有沒有類似的法則呢?請試著自己舉出一些例子.:算術平方根的積等于各個被開方數(shù)積的算術平方根積的算術平方根等
2025-07-25 15:56
【摘要】第二十五講二次函數(shù)的圖象與性質(二)理一理:、性質以及它們的圖象,進行形與數(shù)、形與方程、形與不等式之間的相互轉換,是分析與解決函數(shù)問題的重要方法.△=0時,拋物線y=ax2+bx+c(a≠0)與x軸有個交點,一元二次方程ax2+bx+c=0有實根;當△<0時,拋物線y=ax2+bx+c(a≠0)與
2024-11-19 12:03
【摘要】第一章二次根式復習義務教育課程標準實驗教科書浙江版《數(shù)學》八年級下冊(一)二次根式的定義、根號內字母的取值范圍以及二次根式的值.例1判斷下列各式哪些是二次根式?a6?372x22ba?12??x第一章二次根式復習1.帶二次根號2.被開方數(shù)大于等于0例2求下
2025-07-20 13:43
【摘要】二次根式的乘除(2)備課時間:主備人:【學習目標】:1、進一步理解二次根式的乘法法則,能熟練地進行二次根式的乘法運算2、能熟練地進行二次根式的化簡及變形【重點難點】:重點:熟練地進行二次根式的化簡、乘法運算難點:熟練地進行二次根式的化簡、乘法運算【知識回顧】:1、二次根式乘法運算的法則:
2025-08-17 07:18
【摘要】第一章第六課時:二次根式?要點、考點聚焦?課前熱身?典型例題解析?課時訓練?要點、考點聚焦(1)式子(a≥0)叫做二次根式.(2)二次根式中,被開方數(shù)必須非負,即a≥0,據(jù)此可以確定被開方數(shù)為非負數(shù).(3)公式()2=a(a≥0).aa
2024-11-22 04:29
【摘要】復習引入二次根式加減的運算步驟、實質?二次根式的加減(二)學習目標..學習方法建議類比多項式的運算法則和公式自學指導::3)2748).(2(63383).1(????????????)52)(103).
2024-11-22 02:30
【摘要】⑵什么是一個數(shù)的算術平方根?如何表示?一個正數(shù)的正的平方根叫做它的算術平方根?;貞洟攀裁唇凶鲆粋€數(shù)的平方根?如何表示?一般地,若一個數(shù)的平方等于a,則這個數(shù)就叫做a的平方根。用(a≥0)表示。a0的算術平方根平方根是0a的平方根是a?65S25h表示一
2024-12-07 17:27
【摘要】二次根式的乘法a(a≥0)2)3(a?2)()2(a(a≤0)==|a|(a≥0)及其逆用復習回顧a(1)≥0(a≥0)雙重非負性二次根式的性質:a-a學習目標1.掌握二次根式的乘法公式以及應用的條件2.能根據(jù)二次根式的乘法規(guī)定進行二次根式的乘法計算
2024-11-21 01:02
【摘要】二次根式的加減(第1課時)問題引入:有一個三角形,它的兩邊長分別為和,如果該三角形的周長為,你能求出第三邊嗎?2080592080若設第三邊為x則x=802059--二次根式計算、化簡的結果符合什么要求?
2025-07-26 01:49
【摘要】(一)自學指導思考:用帶根號的式子填空,看看寫出的結果有什么特點?(1)面積為3的正方形的邊長為;面積為S的正方形的邊長為;(2)一個長方形的圍欄,長是寬的2倍,面積為130m2,則它的寬為m
【摘要】九華中學楊利平._______0)2(的平方根是._____5)4(的正方形邊長為面積為.____11____7)1(的算術平方根是,的平方根是.______6)3(的平方根為?.______)5(的平方根為b)0(?b即零的平方根記作另一個平方根是。,記作做其中一個正的平方根叫。平方根,記作有且僅
2024-11-22 04:06
【摘要】(1)兩列火車分別運煤2x噸和3x噸,問這兩列火車共運多少?_______________(2)兩列火車分別運煤2x噸和3y噸,問這兩列火車共運多少?_______________計算鋁合金門窗以及鋁合金
2024-11-22 00:04
【摘要】二次根式???我們以前學習過的有理數(shù)、整式、分式的加、減、乘、除運算,你認為對于二次根式能不能進行加、減、乘、除運算?八年級下冊二次根式的乘法一、教學目標??乘法法則化簡二次根式三、教學過程設計,導出問題(1)一個長方形的長寬如圖所示,求這個長方形的面積。
2024-11-10 23:21