【摘要】§弧度制與角度制(課前預習案)班級:___姓名:________編寫:一、新知導學1、長度等于半徑長的圓弧所對的圓心角叫做,這種以弧度為單位來度量角的制度叫做。2、在半徑為r的圓中,弧長為l的弧所對圓心角為α,則。3、完成下列表格度數(shù)
2024-11-27 23:51
【摘要】撰稿教師:李麗麗學習目標1.了解平面向量基本定理,掌握平面向量基本定理及其應用2.利用平面向量基本定理解決有關(guān)問題學習過程一、課前準備(預習教材96頁~98頁,找出疑惑之處)二、新課導學1、平行向量基本定理2、平面內(nèi)任一向量是否可以用兩個不共線的向量來表示。如圖,設(shè)2
2025-11-09 16:44
【摘要】高一數(shù)學正切函數(shù)的圖像與性質(zhì)林銀玲目標1、借助正切函數(shù)的圖像,說出正切函數(shù)的性質(zhì);2、能利用正切函數(shù)的性質(zhì)解決最值、奇偶性、單調(diào)性、周期性等有關(guān)問題;自學指
2025-11-09 16:46
【摘要】兩角和與差的正切公式一.學習要點:兩角和與差的正切公式及其簡單應用。二.學習過程:1.公式及其推導:2.公式的結(jié)構(gòu)特征:2.公式的運用:例1求tan15?和tan75?的值例2求下列各式的值:1?1tan751tan75??2?
2024-11-27 23:36
【摘要】兩角和與差的余弦公式一.學習要點:兩角和與差的余弦公式及其簡單應用。二.學習過程:1.兩角和與差的余弦公式及推導:公式:
2024-11-27 23:39
【摘要】課題:——任意角姓名:一:學習目標;,判斷象限角,掌握終邊相同角的集合的書寫。二:課前預習繞著從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。,按順時針方向旋轉(zhuǎn)形成的角叫做
2024-12-05 10:17
【摘要】2.1.4數(shù)乘向量一.學習要點:數(shù)乘向量、向量共線和三點共線的判斷。二.學習過程:一、復習引入:1、向量的加法:2、向量的減法:二、講解新課:1、實數(shù)與向量的積引例1:已知非零向量a,作出aaa??和)()(aa???。探究:相同向量相加后,和的長度與方向有什么變化?定義:實數(shù)λ與向量a的積是
2024-11-27 23:46
【摘要】§算法的概念(兩個課時)教學目標:(1)了解算法的含義,體會算法的思想。(2)能夠用自然語言敘述算法。(3)掌握正確的算法應滿足的要求。(4)會寫出解線性方程(組)的算法。(5)會寫出一個求有限整數(shù)序列中的最大值的算法。教學重點:算法的含義、解二元一次方程組和判斷一個數(shù)為質(zhì)數(shù)的算法設(shè)計。.教學難點:把自然
2024-12-03 04:57
【摘要】弧度制(1)學習要點:弧度制以及角度制與之換算關(guān)系。學習過程:(一)復習:度量角的大小第一種單位制—角度制的定義。(二)新課學習:1.1弧度角的定義:長度等于的弧所對的圓心角稱為的角。如圖:?AOB=1rad
【摘要】第二章一、選擇題1.把平面上一切單位向量平移到共同始點,那么這些向量的終點構(gòu)成的圖形是()A.一條線段B.一段圓弧C.兩個孤立的點D.一個圓[答案]D[解析]圖形是一個以始點為圓心,以1為半徑的圓.2.把所有相等的向量平移到同一起點后,這些向量的終點將落在(
2024-11-27 23:47
【摘要】1.2.1任意角的三角函數(shù)(1)一.學習要點:三角函數(shù)的定義、符號分布、誘導公式二.學習過程:(一)復習:初中銳角的三角函數(shù)是如何定義的?(二)新課學習:1.三角函數(shù)定義在直角坐標系中,設(shè)?是一個任意角,?終邊上任意一點P(除了原點)的坐標為(,)xy,它與原點的距離為2222(||||0
2025-11-10 06:26
【摘要】1.2.1任意角的三角函數(shù)(2)一.學習要點:單位圓中的三角函數(shù)線及其簡單應用二.學習過程:(一)復習:1.三角函數(shù)的定義及定義域、值域:2.三角函數(shù)的符號分布:3.誘導公式:(二)新課學習:1.單位圓:圓心在圓點O,半徑等于單位長的圓叫做單位圓.2.有向線段:坐標軸是規(guī)定了方向的直線,那么與之平行的線段
【摘要】算法的概念【學習目標】(1)了解算法的含義,體會算法的思想。(2)能夠用自然語言敘述算法。(3)掌握正確的算法應滿足的要求。(4)會寫出解線性方程(組)的算法?!緦W習重點】重點:算法的含義、解二元一次方程組和判斷一個數(shù)為質(zhì)數(shù)的算法設(shè)計。難點:把自然語言轉(zhuǎn)化為算法語言。課前預習案【知識鏈接
2024-12-08 07:06
【摘要】§單位圓與三角函數(shù)線(課前預習案)班級:___姓名:________編寫:一、新知導學1、單位圓:一般地,我們把的圓叫做單位圓。2、三角函數(shù)線:設(shè)任意角α的頂點在坐標原點O,始邊與x軸的重合,終邊與單位圓(圓心在原點,半徑為單位長
2024-11-28 01:12
【摘要】學習目標3.用向量證明平面幾何、解析幾何問題的步驟。4.體會向量在解決問題中的應用,培養(yǎng)運算及解決問題的能力。學習過程一、課前準備(預習教材117頁~122頁,找出疑惑之處)二、新課導學用例,已知平行四邊形ABCD、E、E在對角線BD上,并且=BEFD.求證:AECF是平行四邊形