【摘要】第二節(jié)平面向量的基本定理及坐標(biāo)表示基礎(chǔ)梳理(1)平面向量基本定理定理:如果e1,e2是同一平面內(nèi)的兩個的向量,那么對于這一平面內(nèi)的任意向量a,一對實(shí)數(shù)λ1,λ2,使a=.其中
2024-11-12 16:44
【摘要】第二章平面向量平面向量的基本定理及坐標(biāo)表示平面向量共線的坐標(biāo)表示1.通過實(shí)例了解如何用坐標(biāo)表示兩個共線向量,以及兩直線平行與兩向量共線的判定.(易混點(diǎn))2.理解用坐標(biāo)表示的平面向量共線的條件,并會應(yīng)用.(重點(diǎn))3.會根據(jù)平面向量的坐標(biāo)判斷向量是否共線.(難點(diǎn))1.平面向量共線的坐標(biāo)表示2
2024-11-19 19:09
【摘要】 平面向量的正交分解及坐標(biāo)表示 2. 平面向量的坐標(biāo)運(yùn)算 考試標(biāo)準(zhǔn) 課標(biāo)要點(diǎn) 學(xué)考要求 高考要求 正交分解的概念 a a 向量的坐標(biāo)表示 b b 平面向量的加、...
2025-04-05 05:43
【摘要】2.平面向量共線的坐標(biāo)表示命題方向1三點(diǎn)共線問題例1.O是坐標(biāo)原點(diǎn),OA→=(k,12),OB→=(4,5),OC→=(10,k).當(dāng)k為何值時,A、B、C三點(diǎn)共線?[分析]由A、B、C三點(diǎn)共線可知,AB→、AC→、BC→中任兩個共線,由坐標(biāo)表示的共線條件解方
2024-11-19 20:38
【摘要】平面向量的概念說課稿 各位專家: 你們好! 今天我說課的課題是《平面向量的概念》,這是江蘇省職業(yè)學(xué)校文化課教材《基礎(chǔ)模塊·下冊》第七章平面向量中的第一節(jié)的內(nèi)容,我將嘗試運(yùn)用新課改的理念、中職學(xué)生...
2024-12-04 22:04
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量共線的坐標(biāo)表示課時跟蹤檢測新人教A版必修4考查知識點(diǎn)及角度難易度及題號基礎(chǔ)中檔稍難向量共線的判定1、2、310由向量共線求參數(shù)56、7、8向量共線的應(yīng)用49111.已知m,n∈R,向量a=(2m+1,m+n)與b=
2024-12-08 20:21
【摘要】§4平面向量的坐標(biāo)4.1平面向量的坐標(biāo)表示4.2平面向量線性運(yùn)算的坐標(biāo)表示4.3向量平行的坐標(biāo)表示,)1.問題導(dǎo)航(1)相等向量的坐標(biāo)相同嗎?相等向量的起點(diǎn)、終點(diǎn)的坐標(biāo)一定相同嗎?(2)求向量AB→的坐標(biāo)需要知道哪些量?(3)兩個向量a=(x1,y
2024-11-28 00:13
【摘要】§平面向量的坐標(biāo)運(yùn)算(二)知識回顧平面向量的坐標(biāo)表示分別與x軸、y軸方向相同的兩單位向量i、j作為基底,任一向量a,有且只有一對實(shí)數(shù)x、y,使得Oxyijaa=xi+yj=(x,y)1.設(shè)則
2024-11-09 06:28
【摘要】平面向量的坐標(biāo)運(yùn)算(一)(教案)中衛(wèi)市第一中學(xué)俞清華教學(xué)目標(biāo):知識與技能:(1)理解平面向量的坐標(biāo)概念;(2)掌握平面向量的坐標(biāo)運(yùn)算.過程與方法:(1)通過對坐標(biāo)平面內(nèi)點(diǎn)和向量的類比,培養(yǎng)學(xué)生類比推理的能力;(2)通過平面向量坐標(biāo)表示和坐標(biāo)運(yùn)算法則的推導(dǎo)培養(yǎng)學(xué)生歸納、猜想、演繹的能力;(3)通過用代數(shù)方法處理幾何問題,提高學(xué)生用數(shù)形結(jié)合的思想方法解決問題的能力.
2025-04-16 23:06
【摘要】平面向量中三點(diǎn)共線定理的應(yīng)用知識梳理(一)、對平面內(nèi)任意的兩個向量的充要條件是:存在唯一的實(shí)數(shù),使由該定理可以得到平面內(nèi)三點(diǎn)共線定理:(二)、三點(diǎn)共線定理:在平面中A、B、P三點(diǎn)共線的充要條件是:對于該平面內(nèi)任意一點(diǎn)的O,存在唯一的一對實(shí)數(shù)x,y使得:且。特別地有:當(dāng)點(diǎn)P在線段AB上時, 當(dāng)點(diǎn)P在線段AB之外時,典例剖析例1、已知是的邊上的任一點(diǎn),
2025-06-20 00:20
【摘要】第2節(jié)平面向量基本定理及其坐標(biāo)表示(對應(yīng)學(xué)生用書第61~62頁)1.向量的夾角(1)定義:已知兩個非零向量a和b,如圖,作OA―→=a,OB―→=b,則∠AOB=θ叫做向量a與b的夾角,也可記作〈a,b〉=θ.(2)范圍:向量夾角θ的范圍是[0,π],a與b同向時,夾角θ
2024-11-12 01:35
【摘要】2.1.5向量共線條件與軸上向量坐標(biāo)運(yùn)算一、學(xué)習(xí)要點(diǎn):單位向量、軸上向量坐標(biāo)運(yùn)算、共線定理應(yīng)用二、學(xué)習(xí)過程:(一)復(fù)習(xí)引入:1.向量的表示方法2.向量的加法,減法及運(yùn)算律3.實(shí)數(shù)與向量的乘法(向量數(shù)乘)4.向量共線定理(二)講解新課:1.單位向量給定一個非零向量a,與a同方向且長度等于的單位向量叫
2024-11-18 16:44
【摘要】第二節(jié)平面向量基本定理及坐標(biāo)表示分析不易直接用c,d表示,所以可以先由聯(lián)合表示,再進(jìn)行向量的線性運(yùn)算,從方程中解出??DABA,??DABA,??NAMA,??DABA,解
【摘要】平面向量的坐標(biāo)表示1、平行向量基本定理:babbababa???????0////)(2、向量數(shù)乘坐標(biāo)表示3、一個向量的坐標(biāo)等于向量終點(diǎn)的坐標(biāo)減去始點(diǎn)的坐標(biāo)),(2121aaaaa??????),()()(11222211yx yxAB yx ByxA,,),()
2024-11-18 15:31
【摘要】第2講平面向量的基本定理及坐標(biāo)表示?不同尋常的一本書,不可不讀喲!?1.了解平面向量基本定理及其意義.?2.掌握平面向量的正交分解及坐標(biāo)表示.?3.會用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運(yùn)算.?4.理解用坐標(biāo)表示的平面向量共線的條件.?1個重要區(qū)別?向量的坐標(biāo)與點(diǎn)的坐標(biāo)不同,向量平移后,其起點(diǎn)
2024-11-17 20:14