【摘要】平面向量基本概念【教學目標】知識目標:(1)了解向量的概念;(2)理解平面向量的含義、向量的幾何表示,向量的模.能力目標:(1)能將生活中的一些簡單問題抽象為向量問題;(2)理解零向量、單位向量、平行向量、相等向量、共線向量的含義,能在圖形中辨認相等向量和共線向量.(3)從“平行向量→相等向量→共線向量”的逐步認識,充分揭示向量的兩個要素及向量可以平移的特點.
2025-04-17 01:00
【摘要】平面向量練習題1.下列命題正確的是(),b滿足|a|>|b|且a與b同向,則a>b、b,必有|a+b|≤|a|+|b|2.如圖,四邊形ABCD中,=,則相等的向量是()
2025-03-25 23:31
【摘要】精品資源平面向量一、選擇題:1.(如中)在中,,則的值為()A20BCD錯誤分析:錯誤認為,從而出錯.答案:B略解:由題意可知,故=.2.(如中)關(guān)于非零向量和,有下列四個命題:(1)“”的充要條件是“和的方向相同”;(2)“”的充要條
2025-03-25 01:22
【摘要】......平面向量經(jīng)典習題匯總1.()已知向量a、b不共線,cabR),dab,如果cd,那么()A.且c與d同向B.且c與d反向C.且c與
2025-03-25 01:23
【摘要】概念、方法、題型、易誤點及應試技巧總結(jié)平面向量一.向量有關(guān)概念:1.向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來表示,注意不能說向量就是有向線段,為什么?(向量可以平秱)。如:已知A(1,2),B(4,2),則把向量AB按向量a=(-1,3)平移后得到的向量是_____(答
2025-10-17 20:51
【摘要】平面向量基礎練習題1.下列向量中,與向量不共線的一個向量()A.B.C.D.2.已知正六邊形,在下列表達式①;②;③;④中,與等價的有()A.個B.個C.個D.個3.如圖,正方形ABCD中,點E是DC的中點,CF:FB=2:1,那么=( ).A.-B.+C.+
2025-03-25 02:04
【摘要】(1)平面向量的加法崇明區(qū)東門中學趙靜教學目標:1.經(jīng)歷引進向量加法的過程,初步掌握向量加法的三角形法則,會用作圖的方法求兩個向量的和向量。2.知道零向量的意義以及零向量的特征。3.通過作圖歸納出向量的加法的交換律和結(jié)合律,會利用它們進行向量運算。教學重點:掌握向量加法的三角形法則,會用作圖
【摘要】平面向量一、本章知識體系?重點及難點:向量概念;向量共線的充要條件;平面向量基本定理;向量的數(shù)量積定義,及運算程及運用;定比分是公式;平移公式及應用;用正、余弦定理解三角形。???純?nèi)容:平面向量的概念及運算;向量數(shù)量積的,應用向量知識解決向量平行、垂直、角度和長度等問題,解斜三角形。?例如圖:△AB
2025-10-31 00:20
【摘要】第一篇:平面向量的應用 平面向量的應用 平面向量是一個解決數(shù)學問題的很好工具,它具有良好的運算和清晰的幾何意義。在數(shù)學的各個分支和相關(guān)學科中有著廣泛的應用。下面舉例說明。 一、用向量證明平面幾何...
2025-11-06 03:33
【摘要】::CBAABCD一.向量的加法:首尾相接共同起點ab?ab?aabbbab二.向量的減法:BADab?a共同起點指向被減數(shù)溫故知新1.當時:0??2.當時:0
2025-08-15 23:54
【摘要】解決平面向量問題的六個基本策略高三復習,貴在快捷有效,讓所學的知識系統(tǒng)化,網(wǎng)絡化,讓解題方法形成方法論.“平面向量”這一部分內(nèi)容作為高考的重要考點,經(jīng)常出現(xiàn)在在選擇填空的壓軸題中,、研究,總結(jié)出解決平面向量問題的六種基本策略,供大家參考.
2025-03-25 07:46
【摘要】平面向量與空間向量知識點對比內(nèi)容平面向量空間向量定義既有大小,又有方向既有大小,又有方向表示方法(1)用有向線段表示;(2)用或a,b,c表示模向量的長度,用||或|a|表示零向量長度為0的向量,記為a單位向量模為1的向量叫做單位向量相等向量長度相等,方向相同的向量叫做相等向量相反向量長度相
2025-06-19 22:59
【摘要】平面向量專題一、選擇題,邊的高為,若,,,,,則(A)(B)(C)(D),向量且,則(A)(B)(C)(D),b是兩個非零向量。|a+b|=|a|-|b|,則a⊥b
2025-04-17 13:06
【摘要】......平面向量高考真題精選(一) 一.選擇題(共20小題)1.(2017?新課標Ⅱ)設非零向量,滿足|+|=|﹣|則( ?。〢.⊥ B.||=|| C.∥ D.||>|| 2.(2017?新課標Ⅱ)已知△ABC是邊
【摘要】向量與三角形內(nèi)心、外心、重心、垂心知識的交匯一、四心的概念介紹(1)重心——中線的交點:重心將中線長度分成2:1;(2)垂心——高線的交點:高線與對應邊垂直;(3)內(nèi)心——角平分線的交點(內(nèi)切圓的圓心):角平分線上的任意點到角兩邊的距離相等;(4)外心——中垂線的交點(外接圓的圓心):外心到三角形各頂點的距離相等。二、四心與向量的結(jié)合(1)是的重心.證法1:設
2025-07-18 04:20