【摘要】第二章平面向量第二章2.3平面向量的基本定理及坐標(biāo)表示第二章2.平面向量的正交分解及坐標(biāo)表示2.平面向量的坐標(biāo)運(yùn)算課前自主預(yù)習(xí)課堂典例講練課后強(qiáng)化作業(yè)課前自主預(yù)習(xí)溫故知新1.所謂的共線(平行)向量是指________,向量共線定理的內(nèi)容是__
2025-06-19 16:22
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=a
2025-11-03 19:04
【摘要】復(fù)數(shù)與平面向量的聯(lián)系請(qǐng)同學(xué)們考慮:1、有關(guān)復(fù)數(shù)的知識(shí),我們學(xué)了什么?2、有關(guān)向量的知識(shí),你還記得什么?(1)既有大小又有方向的量叫向量。向量可用有向線段來(lái)表示。(2)向量的模:向量的大小叫做向量的模。(3)相等的向量:模相等且方向相同的向量。(4)零向量:模
2025-10-31 09:20
2025-11-03 17:25
【摘要】第4節(jié)平面向量的應(yīng)用(對(duì)應(yīng)學(xué)生用書(shū)第66頁(yè))1.向量在平面幾何中的應(yīng)用平面向量在平面幾何中的應(yīng)用主要是用向量的線性運(yùn)算和數(shù)量積解決平行、垂直、長(zhǎng)度、夾角等問(wèn)題.設(shè)a=(x1,y1),b=(x2,y2),①證明線線平行或點(diǎn)共線問(wèn)題,主要利用共線向量定理,即a∥b?a=λb(b≠0)?x1y2-x
2025-11-02 06:00
【摘要】先復(fù)習(xí)向量的加法ba平行四邊形法則a三角形法則-----首尾相接首到尾----相同起點(diǎn)對(duì)角線同學(xué)們學(xué)習(xí)了向量的加法,接下來(lái)我們要學(xué)習(xí)向量的減法如圖:a+b=abc移項(xiàng)得:c-a=b這么說(shuō)來(lái),向量c與向量a進(jìn)行了減法運(yùn)算,得
2025-10-31 05:07
【摘要】一、向量的直角坐標(biāo)運(yùn)算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???ababab112233(,,)???ababab123(,,),()??
2025-10-31 01:17
【摘要】一、向量的直角坐標(biāo)運(yùn)算二、距離與夾角(1)向量的長(zhǎng)度(模)公式注意:此公式的幾何意義是表示長(zhǎng)方體的對(duì)角線的長(zhǎng)度。在空間直角坐標(biāo)系中,已知、,則(2)空間兩點(diǎn)間的距離公式注意:(1)當(dāng)時(shí),同向;(2)當(dāng)
2025-11-03 16:42
【摘要】集合的含義與表示觀察下列對(duì)象:(1)2,4,6,8,10,12;(2)我校的籃球隊(duì)員;(3)滿足x-3>2的實(shí)數(shù);(4)我國(guó)古代四大發(fā)明;(5)拋物線y=x2上的點(diǎn).1.定義一般地,我們把研究對(duì)象統(tǒng)稱為元素把一些元素
2025-10-31 04:45
【摘要】集合的含義及其表示藍(lán)藍(lán)的天空中,一群鳥(niǎo)在歡快的飛翔茫茫的草原上,一群羊在悠閑的走動(dòng)清清的湖水里,一群魚(yú)在自由地游動(dòng);-----集合的含義及其表示(一)問(wèn)題情境、原來(lái)就讀的學(xué)校、現(xiàn)在的班級(jí)。:像“家庭”、“學(xué)?!?、“班級(jí)”等,有什么共同特征?同一類對(duì)象的匯集活動(dòng);、概括各實(shí)例的共同特征
2025-11-02 05:59
【摘要】平面向量名師答疑平面向量的基本定理向量平面向量的坐標(biāo)表示平移向量的數(shù)量積兩個(gè)非零向量垂直的充要條件余弦定理正線定理斜三角形的解法及其應(yīng)用線段定比分點(diǎn)坐標(biāo)公式兩個(gè)向量共線的充要條件向量的線性運(yùn)算知識(shí)結(jié)構(gòu)(一)知識(shí)點(diǎn)歸納
2025-11-01 08:35
【摘要】向量數(shù)量積的物理背景與定義復(fù)習(xí)回顧x1+x2y1+y2x1-x2y1-y2λx1λy11、若向量a=(x1,y1),b=(x2,y2)則向量a+b=(,)
2025-11-03 01:35
【摘要】設(shè)是平面內(nèi)所有向量的一組基底,則下面四組向量中,不能作為基底的是()ABCD21ee??,2121eeee??????和12216423eeee????
2025-07-24 04:31
【摘要】第三節(jié)平面向量的數(shù)量積及平面向量應(yīng)用舉例解分析用數(shù)量積和模的定義以及運(yùn)算性質(zhì),逐題計(jì)算.79642)(||)4(3427158||3120cos||||5||2352)3()2)(3(.594||||2.32132120cos||||12222o2222222o???????????
2025-11-02 09:01
【摘要】第二章§3&理解教材新知把握熱點(diǎn)考向應(yīng)用創(chuàng)新演練知識(shí)點(diǎn)一知識(shí)點(diǎn)二考點(diǎn)一考點(diǎn)二考點(diǎn)三3.1&空間向量的標(biāo)準(zhǔn)正交分解與坐標(biāo)表示空間向量基本定理學(xué)生小李
2025-06-12 19:01