【摘要】幾何證明題的知識點總結(jié)知識點:一、線段垂直平分線(中垂線)性質(zhì)定理及其逆定理:定理:線段垂直平分線上的任意一點到這條線段兩個端點的距離相等。逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。MPAB
2025-06-27 13:09
【摘要】1:線段、角、相交線、平行線一:基礎(chǔ)知識點一、直線:直線是幾何中不加定義的基本概念,直線的兩大特征是“直”和“向兩方無限延伸”。二、直線的性質(zhì):經(jīng)過兩點有一條直線,并且只有一條直線,直線的這條性質(zhì)是以公理的形式給出的,可簡述為:過兩點有且只有一條直線,兩直線相交,只有一個交點。三、射線:1、射線的定義:直線
2024-10-22 17:06
【摘要】浙教版初中數(shù)學(xué)中考知識點匯總:整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)(有限小數(shù)和無限循環(huán)小數(shù)),像√3,π,???叫無理數(shù);有理數(shù)和無理數(shù)統(tǒng)稱實數(shù)。實數(shù)按正負(fù)也可分為:正整數(shù)、正分?jǐn)?shù)、0、負(fù)整數(shù)、負(fù)分?jǐn)?shù),正無理數(shù)、負(fù)無理數(shù)。(0和正整數(shù));奇數(shù)2n-1、偶數(shù)2n、質(zhì)數(shù)、合數(shù)。科學(xué)記數(shù)法:(1≤a<10,n是整數(shù)),有效數(shù)字。3.(1)倒數(shù)積為1;(2)相反數(shù)和為0,商為-1;(3)絕對值是距離
2025-04-04 04:45
【摘要】 初中數(shù)學(xué)知識點匯總(上) 一、相似三角形 考點一 相似三角形的概念、相似比的意義、畫圖形的放大和縮小 考核要求: (1)理解相似形的概念; (2)掌握相似...
2024-12-03 22:29
【摘要】1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯角相等,兩直線平行
2025-06-25 16:10
【摘要】初中中考數(shù)學(xué)幾何知識點大全直線:沒有端點,沒有長度射線:一個端點,另一端無限延長,沒有長度線段:兩個端點,有長度一、圖形的認(rèn)知1、余角;補角:鄰補角:二、平行線知識點1、對頂角性質(zhì):對頂角相等。注意:對頂角的判斷2、垂線、垂足。過一點有條直線與已知直線垂直3、垂線段;垂線段長度==點到直線的距離4、過直線外一點只有一條直線與已知直線平行
2025-04-04 04:33
【摘要】初中數(shù)學(xué)平面直角坐標(biāo)知識點總結(jié) 一、基本概念 1、有序數(shù)對:我們把這種有順序的兩個數(shù)a與b組成的數(shù)隊,叫做有序數(shù)對。 2、平面直角坐標(biāo)系:我們可以在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面...
2024-11-20 05:56
【摘要】八年級平面幾何難題集錦,已知等邊△ABC,P在AC延長線上一點,以PA為邊作等邊△APE,EC延長線交BP于M,連接AM,求證:(1)BP=CE;(2)試證明:EM-PM=AM.,△ACM,△CBN都是等邊三角形,線段AN,MC交于點E,BM,CN交于點F。求證:(1)AN=MB.(2)將△ACM繞點C按逆時針方向旋轉(zhuǎn)一定角度,如圖②所示,其
2025-03-27 00:38
【摘要】......平面幾何的17個著名定理1.若不給自己設(shè)限,則人生中就沒有限制你發(fā)揮的藩籬。2.若不是心寬似海,哪有人生風(fēng)平浪靜。在紛雜的塵世里,為自己留下一片純靜的心靈空間,
2025-06-19 23:35
【摘要】,,平分交于,如圖,,垂足為,,為垂足。是中點,是中點。若的外接圓與的另一個交點為。求證:、、、四點共圓。.證明:作AQ延長線交BC于N,則Q為AN中點,又M為AC中點,所以QM//BC.所以 .同理,.所以QM=PM.又因為共圓.所以.所以.所以P、H、B、C四點共圓..故 .結(jié)合,知為HP中垂
2025-06-19 23:26
【摘要】平面幾何四個重要定理四個重要定理:梅涅勞斯(Menelaus)定理(梅氏線)△ABC的三邊BC、CA、AB或其延長線上有點P、Q、R,則P、Q、R共線的充要條件是。塞瓦(Ceva)定理(塞瓦點)△ABC的三邊BC、CA、AB上有點P、Q、R,則AP、BQ、CR共點的充要條件是。托勒密(Ptolemy)定理四邊形的兩對邊乘積之和等于其對角線乘積的
2025-06-19 22:55
【摘要】教材分析本節(jié)內(nèi)容是數(shù)學(xué)必修4第二章平面向量的第一課時.本節(jié)課是在學(xué)習(xí)了向量的線性運算及向量數(shù)量積的基礎(chǔ)上進行的,是對前面學(xué)習(xí)內(nèi)容的延續(xù)與拓展;本節(jié)的目的是讓學(xué)生加深對向量的認(rèn)識,更好地體會向量這個工具的優(yōu)越性。對于向量方法,就思路而言,向量方法與平面幾何中的解析法是一致的,不同的只是用“向量和向量運算”來代替“數(shù)和數(shù)的運算”.同時本節(jié)課也是對向量相關(guān)知識的進一步鞏固、應(yīng)用
2025-08-18 16:34
【摘要】平面幾何中的幾個重要定理一.塞瓦定理塞瓦(G。Ceva1647—1743),意大利著名數(shù)學(xué)家。塞瓦定理設(shè)為三邊所在直線外一點,連接分別和的邊或三邊的延長線交于(如圖1),則與塞瓦定理同樣重要的還有下面的定理。塞瓦定理逆定理設(shè)為的邊或三邊的延長線上的三點(都在三邊上或只有其中之一在邊上),如果有
2025-08-22 20:55
【摘要】競賽專題講座-平面幾何四個重要定理重慶市育才中學(xué)瞿明強 四個重要定理:梅涅勞斯(Menelaus)定理(梅氏線)△ABC的三邊BC、CA、AB或其延長線上有點P、Q、R,則P、Q、R共線的充要條件是四個重要定理:。塞瓦(Ceva)定理(塞瓦點)△ABC的三邊BC、CA、AB上有點P、Q、R,則AP、BQ、CR共點的充要條件是。托勒密
2025-06-20 00:20
【摘要】習(xí)題1如圖,P為等邊△ABC內(nèi)一點,∠APB=113°,∠APC=123°,試說明:以AP、BP、CP為邊長可以構(gòu)成一個三角形,并確定所構(gòu)成三角形的各內(nèi)角的度數(shù).解:將△APC繞點A順時針旋轉(zhuǎn)60°得△AQB,則△AQB≌△APC∴BQ=CP,AQ=AP,∵∠1+∠3=60°,∴△APQ是等邊三角形,∴QP=AP,∴△QBP就是
2025-08-05 04:08