【正文】
180 turning with the waving gait, it needs only regroup its legs and/or change the leader leg. The leader leg changes from leg 1 to leg 3 in group ‘1+3+5, 2+4+6’, the direction will change from 0 to 120( see ). In contrast, for the rectangular architecture, a special gait is required for turning action. Generally, it requires four steps for a rectangular robot to realize a turning action(see ).Compared with recetangular structure, a hexagonal chassis with a hemisphere body is better for lunar rover(Fig. 4) IV. Implementation and results Gait analysis and simulation For hexagonal hexapod robot, the wave gaits were studied mostly. However, it can have several different gaits even for straight walking. A. Wave gait Robot with wave gait () is the easiest gait to turn around. But it is very plex to control because every leg has a different gait. For the wave gait, the leg’s structure is as in Fig. 6. There are two revolute joints along axes Y, one along axes Z, its foot, contacting with the ground bees a spherical joint (with three revolute freedoms). During walking, there will be three legs to support the body, and three legs wave ahead (Fig. 5). The whole body’s simple structure is as Fig. 6(b). There are 12 links, 13 revolute joints, two spherical joints in this configuration. The positon is described in a space coordinate frame. The number of degrees of freedom of the robot is puted as follows : F=12*65*123*2=6 In this case, every supporting leg has three freedoms, which makes control very plex.B. Crab gait Another gait for hexagonal robot is ‘crab gait’ or ‘kickup gait’ [8], which is a continuous gait.. Six legs are also grouped into two patterns, 1+3+5 and 2+4+6. There willbe 3 legs for supporting while three legs rise to walk ahead at every time. The track of foot is a parabola ( see ): y=ax^2+b ‘b’: is the maxmimal height that the robot’s feet can raise. While passing small obstacles, ‘b*fh’ is the height of obstacle, ‘2*sqrt(by)*fw’ is the width of obstacle, given that, ‘fh’ and ‘fw’ are factors of obstacle’s height and width, 0‘fh, fw’1. In figure 7(a), legs in solid line are in the supporting phase, legs in dashed line are in the walking phase. From simple structure (see (b)), the number of degrees of freedom of the robot is: F=3*52*6=3. From the above analysis, the crab gait is simpler than the wave gait. However, it also needs special gaits for turning. Turning To realize turning motion, there are two cases. For small angle turning, turning can be realized during walking, the robot does not need to stop. The turning angle must be less than 30 degrees to avoid walking legs colliding with supporting legs. See in . For large angle turning, three steps are needed. There are always four legs standing on the ground to support the body, and the other two legs rise to adjust direction. Fig. 9 and Fig. 10 listed the steps of 60 degrees and 90 degrees turning cases. Quadrangles in the above figures are areas of support。 在目前國內機械市場,這種小型的設備能夠提高生產(chǎn)效率,通過自主創(chuàng)新,將來有可能會有很大的市場需求量,而市場有的多是早期設計的產(chǎn)品,技術含量不高。 7 結論至此,電子元件目檢設備結構的設計已基本完成,在這次畢業(yè)設計中認真的對每個零件進行了研究、分析、比較、計算,通過反復推敲直到設計出符合要求的最佳效果。合理的軸承配置應考慮軸在機器中有正確的位置、防止軸向竄動以及軸受熱膨脹后不至于將軸承卡死等因素。放料機構中有安裝一個小的馬達,用來本身軸的自動轉動。由輪轂寬度并參考鍵的長度系列,取鍵長L=6mm(比輪轂寬度小些)。 帶輪與軸輪轂的聯(lián)接鍵計算由于帶輪的帶寬相對較小,所以鍵槽用盤銑刀銑出。由手冊中查得a=11mm。針輪與軸的連接采用的是半圓頭平鍵444。帶輪的右端采用套筒定位,套筒高度h,取h=5mm,則軸環(huán)處的直徑=20mm。因軸承同時受有徑向力和軸向力的作用。聯(lián)軸器的計算轉矩,考慮到轉矩很小,故取KA=,則: (52)=因為孔很小,所以設計成的導料帶機結構形似一針輪。帶盤放入波紋形的運輸盒內,用于運輸和發(fā)貨。薄膜厚度,包括膠,為50~65微米。張緊輪的輪槽尺寸與帶輪的相同,且直徑小于帶輪的直徑。7.帶輪的嚙合齒數(shù) (44)=208.額定基本功率 (45)由表6152查得=50N m=9.帶寬bs (46)由表6152查得XL型帶bs=已知Zm=20由表6153 查得查得 Kz=1,=由表6142查得帶寬代號位037 bs=由表6146查得標準同步帶輪帶雙邊擋圈時最小輪寬b=10.作用在軸上的力Fr (47)=45N== 皮帶的張緊方法各種材質的皮帶都不是完全的彈性體,在預緊力的作用下,經(jīng)過一段時間的運轉后,就會由于塑性變形而松弛,使得預緊力F0降低。由于抗拉層承載后變形小,能保持同步帶的周節(jié)不變,所以帶與帶輪之間沒有相對滑動,從而保證了同步傳動。 潤滑方式的確定因為傳動裝置屬于輕型的,且傳速較低,所以其速度小于1m/s,所以采用脂潤滑,設計非常簡單,潤滑脂可起到很大的密封作用,維護費用低,使用壽命長,在正常工作條件下,油脂有可能實現(xiàn)“終生潤滑”。滾動軸承與軸的定位是由過渡配合來保證。Ld=60mm,Dd=54mm,Le=12mm,De=35mm, =22,=25.軸上零件的軸向定位齒輪與軸的軸向定位均采用平鍵連接,按mm由《機械設計課程設計》表14-1查的平鍵截面bh=10mm8mm,鍵槽用鍵槽銑刀加工長為34mm,同時為了保證齒輪與軸的配合有良好的對中性,故選擇齒輪輪轂與軸的配合為,滾動軸承與軸的定位是由過渡配合來保證。Lb=135mm,A與B之間用套筒進行軸向定位,所以無軸肩,所以取Db=36mm。 齒輪頂圓與內箱壁距離:取: =19mm。設計計算 綜合考慮取m=按接觸強度計算 算出最小齒 所以這樣設計出的齒輪傳動,既滿足了齒面接觸疲勞強度,又滿足了齒根彎曲疲勞強度,并做到結構緊湊,避免浪費。各軸轉速: 電動機的額定功率 每對軸承傳動效率:圓柱齒輪的傳動效率:聯(lián)軸器的傳動效率:運動和動力參數(shù)結果如下表(表32): 表32 運動和動力參數(shù) 軸名功率P (KW)轉矩T(Nm)轉速(r/min)1軸 402軸 3軸 齒輪的設計:高速級大小齒輪的設計: 材料:考慮工作年限較長,連續(xù)單向運轉,因而齒輪材料所需耐磨性,強度好,無振動性,所以不必考慮沖擊,由表101查得,所以高速級小齒輪選用40Cr鋼調質,齒面硬度為280HBS。圖31 電動機的安裝 減速器的分類和選擇 減速器是一種動力傳達機構,它是一種相對精密的機械設備,使用它的作用是降速同時提高輸出扭矩,扭矩輸出比例按電機輸出乘減速比。步進電動機以其顯著的特點,在數(shù)字化制造時代發(fā)揮著重大的用途。傳統(tǒng)步進電動機的控制方式多是采用單片機或PLC作為控制器產(chǎn)生脈沖,然后加上環(huán)形分配器、功率驅動部分,最后連接電動機,其中的軟硬件實現(xiàn)都較復雜。同步帶靠嚙合傳動,速比準確,傳動效率高,初張緊力小,壓軸力小,結構緊湊,耐油,耐磨性好,安裝制造要求高。3.傳輸帶有效拉力Fe=30N。電子元件產(chǎn)業(yè)得到全面、快速的發(fā)展,無論產(chǎn)品種類、規(guī)格、產(chǎn)能和產(chǎn)量、技術水平都得到很大提高。目前,電子元件正進入以新型電子元件為主體的時代,它將基本上取代傳統(tǒng)元件,由原來只為適應整機的小型化及其裝配新工藝的要求,變?yōu)闈M足數(shù)字技術、微電子技術發(fā)展所提出的特性要求。電子元件片式化的同時,小型化也在迅速發(fā)展,不僅傳統(tǒng)元件在迅速小型化,片式元件也在迅速小型化。為了減輕以往作業(yè)上所需耗費的時間與勞力,且讓出貨作業(yè)更準確,并降低檢測成本,所以設計這套方案其目的就是想改進這些不足。同時,電子元件是信息技術的重要支撐,是電子裝備、電子信息系統(tǒng)以及武器裝備控制系統(tǒng)的重要基礎。s electronic ponents and technology to enhance eyuan the overall level of the device to promote the development of electronic information industry, has important theoretical and practical significance.This issue is a set of electronic ponents designed by visual inspection equipment that works on electronic ponents is expected to bring in, transport through the transmission mechanism under the camera and zoom through the sc