【摘要】200*1504K282*2829K329*24510K????295*24610K329*24510K333*2909K????365*26710K400*34814K
2025-04-14 02:46
【摘要】200*1504K282*2829K329*24510K295*24610K329*24510K333*2909K365*26710K400*34814K380*29511K
2024-10-22 17:05
【摘要】梯形中常見輔助線例題精講,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,求證:CD=BC-AD.延長兩腰,將梯形轉化成三角形.EDBCA平移一腰,梯形轉化成:平行四邊和三角形.DBCAF2.如圖,在梯形ABCD中,A
2024-11-03 23:14
【摘要】專題四利用圖形變換添加輔助線解答平面幾何題有難度,多半是添加輔助線帶來的.我們平時添加的輔助線大多是作平行線、垂線、連接、延長之類,其實這是表象,而本質是利用圖形變換轉換解題思路所得.初中階段常見的圖形變換有:圖形的平移,圖形的對稱(軸對稱和中心對稱),圖形的旋轉,圖形的相似(包括全等、位似)等.我們在解決平面幾何問題時,
2025-06-15 21:36
【摘要】同學們好梯形的常用輔助線的研究梯形的中位線的研究平移腰作高補為三角形平移對角線其他方法轉化為三角形或平行四邊形等在梯形中常用的作輔助線方法開動腦筋靈活應用AB
2025-01-12 13:57
2025-06-16 12:07
【摘要】初中幾何輔助線口訣三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關系現。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗。三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。四邊形平行四邊形出現,對稱中心等分點。梯形里面作高線,平移一腰試試
2025-07-17 18:02
【摘要】專業(yè)資料分享初中幾何輔助線口訣三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關系現。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗。三角形中兩中點,連接則成中位線
2025-07-17 18:01
【摘要】專業(yè)資料分享相似三角形中的輔助線在添加輔助線時,所添加的輔助線往往能夠構造出一組或多組相似三角形,或得到成比例的線段或得出等角,等邊,從而為證明三角形相似或進行相關的計算找到等量關系。主要的輔助線有以下幾種:一、作平行線例1.如圖,的AB邊和AC邊上各取一點D和E,且使AD=
2025-05-16 12:02
【摘要】中點常見的輔助線中點經常所在的三角形:全等三角形等腰三角形:三線合一直角三角形:斜邊上的中線、三角形的中位線:一、一個中點常見的輔助線(1)利用中點構建全等形:倍長中線至二倍,構建全等三角形(2)有中點聯想直角三角形的斜邊上的中線(3)由中點聯想到等腰三角形的“三線合一”1、在△ABC中,AD是BC邊上的中線,若AB=2,AC=4,則AD的取值范圍是_
2025-03-22 11:22
【摘要】第1頁共5頁九年級數學相似輔助線大比拼專題練習試卷簡介:全卷共12題,全部為選擇題,共120分。整套試卷立足基礎,又有一定思考性。雖然只是25分鐘的小測試,但不乏數學中考試題中加大思維力度、減少運算量的新穎別致的試題。不僅從知識上和能力上有不同方面及不同程度考查,而且在測試的過程中也同時可以感受到試題的活潑與節(jié)奏感,
2025-08-02 17:21
【摘要】第二講三大模型輔助線模塊一手拉手模型△ACD、△CBE為等邊△,A、C、B共線△ACD、△CBE為等邊△,AC、BC夾角任意△ACD、△CBE為頂角相同的等腰△ △ACD、△CBE可繞公共點任意旋轉例題1.如圖,等腰Rt△OAB,等腰Rt△OCD,∠AOB=∠COD=90o,M、N分別是AC、BD的中點,求證:①∠1=∠2;②AC⊥BD;
2025-07-26 10:27
【摘要】第一篇:中考數學證明題輔助線經典做法訓練 新智慧輔導中心吳老師:*** 初中數學培優(yōu)訓練題 補形法的應用 班級________姓名__________分數_______ 一些幾何題的證明或求...
2024-10-14 02:59
【摘要】第一篇:初中教你如何做幾何輔助線 初中幾何輔助線做法 三角形 圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關系現。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段...
2024-10-24 21:17
【摘要】全等三角形輔助線系列之三與截長補短有關的輔助線作法大全一、截長補短法構造全等三角形截長補短法,是初中數學幾何題中一種輔助線的添加方法,也是把幾何題化難為易的一種思想.所謂“截長”,就是將三者中最長的那條線段一分為二,使其中的一條線段等于已知的兩條較短線段中的一條,然后證明其中的另一段與已知的另一條線段相等;所謂“補短”,就是將一個已知的較短的線段延長至與另一個已知的較短的長度相等
2025-07-24 05:40