【正文】
其他大多數(shù)的現(xiàn)存車站站臺高度僅有 那對于設(shè)置小導(dǎo)管太矮了。 .現(xiàn)存的車站結(jié)構(gòu)和早期的通風(fēng)模型 地鐵有兩條運(yùn)營線路。緊急情況的特征已經(jīng)很好的研究,但是已經(jīng)有一些研究關(guān)于在通常的情況下站臺的空氣分布狀態(tài)。 Tajadura et al., 2020)已經(jīng)做了許多這方面的工作。 (Li and Chow, 2020。 Papakonstantinou et al., 2020。發(fā)現(xiàn)這兩個(gè)流體公式模型可以被用于預(yù)知速度和溫度在車站下的一些合理的假設(shè)下進(jìn)行學(xué)習(xí)。 Luo and Roux, 2020). Then if emergency occurred that the welldesigned ventilation system can save many people’s life and belongings (Chow and Li, 1999。 Katolidoy and Jicha, 2020). Tunnel ventilation system design can be developed in depth from the predictions of various parameters, such as vehicle emission dispersion, visibility, air velocity, etc. (Li and Chow, 2020。 Zhang et al., 2020。 Allocca et al., 2020。 Sigl and Rieker, 2020。建造三個(gè)空間最初的模型和現(xiàn)存物的優(yōu)化設(shè)計(jì)和重建車站。 Moureh and Flick, 2020)。 Vardy et al., 2020。多數(shù)科學(xué)家和研究者 (Waterson and Lavedrine, 2020。然后如果有緊急情況出現(xiàn)有計(jì)劃的通風(fēng)設(shè)計(jì)系統(tǒng)可以拯救生命和財(cái)產(chǎn) (Chow and Li, 1999。由于工程的存款成本,那現(xiàn)存的地鐵將繼續(xù)運(yùn)營并且車站的重建主要在天津地鐵的一號線。在車站沒有機(jī)械排氣系統(tǒng),空氣的流動是通過隧道的機(jī)械扇子和車站的 外文資料翻譯 第 10 頁 自然通風(fēng)。每邊的橫向速度為 ,80 個(gè)相同風(fēng)速的網(wǎng)格式通風(fēng)口(,站臺兩邊個(gè) 40 個(gè) )被用于排氣是可靠的 . 3. CFD 模擬和優(yōu)化設(shè)計(jì) CFD 模擬在戶內(nèi)環(huán)境的應(yīng)用是基于能量 ,質(zhì)量和動力的不可壓縮空氣守恒公式 ,研究采用二平衡空氣紊亂能量模型被 Launder和 Spalding升級后的二平衡紊亂模型 .它綜合了 governing equation 在控制體積的重要性和使離散明確的表示在格子上 ,最后模擬并完成了 AIRPAK 軟件 . 前述的簡化和假定 由于機(jī)械通風(fēng)和火車行駛所帶來的風(fēng) ,所以站臺上的空氣紊亂是短暫和復(fù)雜的 .除非一些簡化和假設(shè)能成立 ,否則那個(gè)三維的數(shù)學(xué)模型就不能表述從而使得結(jié)果有分歧 .然而為了確保計(jì)算結(jié)果的可靠性 ,一些限制的簡化和假設(shè)不得不被 提出來 . (1) 最大風(fēng)速的周期在短暫的過程中是值得注意的 .很顯然最大風(fēng)速是在火車停或行駛離開車站這個(gè)周期中達(dá)到的 (Yau et al., 2020。中間留出的空間是留給乘客等待機(jī)車。 2.通風(fēng)系統(tǒng) 天津地鐵是中國第二個(gè)建造的地鐵,重建將會適應(yīng)城市的發(fā)展并且希望用于2020 年的北京奧運(yùn)會。地鐵通風(fēng)是至關(guān)重要的因?yàn)槌丝托枰迈r和高質(zhì)量的空氣 (Lowndes et al., 2020。 Carvel et al., 2020。 Moureh and Flick, 2020)。特別是在復(fù)雜的環(huán)境計(jì)量中 ( Chow and Li, 1999。 Gehrke et al., 2020), so the period the simulation concerns about the best period of time for simulation is from the point when at the section of ‘x = m’ (Fig. 1) and the air velocity begin to change under pistoneffect to the point when train totally stops at the station (defined as a ‘pullingin cycle’). (2) Though the pullingin cycle is a transient process, it is simplified to a steady process. (3) Because the process is presumed to a steady process, the transient velocity of test sections, which was tested in Southwest Station in pullingin cycle, is presumed to the timeaveraged velocity of test sections. 外文資料翻譯 第 5 頁 (4) The volume flow driven into the station by pullingin train is determined by such factors as BR (blocking ratio, the ratio of train crosssection area to tunnel crosssection area), the length of the train and the resistance of station etc. For existent and new stations, BRs are almost the same. Although the length of the latter train doubles that of the former which may increase the piston flow volume, the resistance of latter is greater than that of the former which may counteract this increase. So it is presumed that the piston flow volume is same for both existent and new station and that the volume flow through the passenger exits is also same. Based on this presumption, the results of the field measurements at the existent station can be used as velocity bou