【正文】
1 2 3 4 5 Power(MW) 615 60 60 25 25 The disturbance investigated is a threephase shortcircuit on Bus number 2. This threephase fault represents the most severe disturbance for transient stability problems. It must be noted that all simulations are developed by PSAT (version β1). Results and Discussions Impact of Location In order to assume the impact of the wind power to angular stability of power system, we included a three phase symmetrical fault then we calculate the CCT corresponding to a case without wind source and others cases where a wind source is connected to test system by different Buses. Figure 2. Base case Without a Wind Source The Base Case represents the normal operation of the system without any wind power connected to the system. The critical fault clearing time (CCT) can be determined using transient simulations [3]. For this case, the result is CCT = 196 ms. Fig. 3 shows the speed generators in parison for a fault clearing time close to the critical clearing time. In Fig. 3b, the fault introduced has duration of t = 197 ms, so the time is exceeding the stability limit of CCT. Figure 3a. Rotor speed of all generators at t = 196 ms Figure 3b. Rotor speed of all generators at t=197 ms With a Wind Source After that, one wind turbine generator is connected to system through a transmission line on different buses for evaluating their effect to the angular stability. Table 2. Results from the simulations for the angular stability on different locations Bus number Bus 1 Bus 3 Bus 8 Bus 14 CCT (ms) 186 187 263 220 Compared to the previous case where any wind source was connected, the integration of wind source has increased the transit stability when it was connected at BUS 8 or BUS 14, but on the contrary for cases of BUS 1 and BUS 3, so there is no general statement possible, if wind generation improves transient stability margins or if the impact is rather negative. The answer depends on location of wind resources and the problem has to be analyzed individually for each case. Effect of Type of Generator Technology In order to determine the effect of type of generator technology to transit behavior of grid, two types of generators are studied with keeping the same fault and the same location of wind source. Case 1: Fixed Speed The critical fault clearing time (CCT) can be determined using transient simulations. For this case, where wind source is connected to Bus N176。 ?影響類型的發(fā)電技術(shù)在運(yùn)輸?shù)姆€(wěn)定性是非常重要的和雙饋發(fā)電機(jī)提供了更多的表現(xiàn)比鼠籠式異步發(fā)電機(jī)。建 2種汽輪機(jī)技術(shù)的幾個(gè)公共總線。圖 4顯示所有發(fā)電機(jī)轉(zhuǎn)子故障清除時(shí)間比較接近臨界清除時(shí)間。 圖 3a 所有發(fā)電機(jī)的轉(zhuǎn)子轉(zhuǎn)速 =196 毫秒 圖 3b 所有發(fā)電機(jī)的轉(zhuǎn)子轉(zhuǎn)速 =197 毫秒 在風(fēng)源之后,一個(gè)風(fēng)力發(fā)電機(jī)是連接到系統(tǒng)通過(guò)傳輸線路 上評(píng)價(jià)其效果的角穩(wěn)定。 結(jié)果與討 : 以假設(shè)的影響,風(fēng)力角穩(wěn)定的電力系統(tǒng),包括一三階段對(duì)稱故障然后計(jì)算橫向?qū)?yīng)一個(gè)沒有風(fēng)等情況下,風(fēng)源連接到測(cè)試系統(tǒng)的不同總線。 圖 1a 鼠籠型異步發(fā) 電機(jī)。本文主要類型的風(fēng)力渦輪機(jī)是 : ?恒速風(fēng)機(jī)(圖 1),其中包括一個(gè)網(wǎng)格耦合感應(yīng)發(fā)電機(jī)短路 [9 ]。 本文的重點(diǎn)是: 以確定臨界清除時(shí)間(橫向)的若干情況下觀察運(yùn)輸行為仿真測(cè)試系統(tǒng)在電網(wǎng)故障期間使用的電力系統(tǒng)分析工具箱(部分)。瞬態(tài)短路故障是一個(gè)非常常見的干擾功率系統(tǒng)。 指導(dǎo)教師評(píng)語(yǔ): 簽名: 年 月 日 (用外文寫 ) 附件 1:外文資料翻譯譯文 風(fēng)電對(duì)電力系統(tǒng) 角 穩(wěn)定性的 影響 摘要 風(fēng)能轉(zhuǎn)換系統(tǒng)是非常不同的性質(zhì)與傳統(tǒng)發(fā)電機(jī)組。仿真分析是建立在 14總線測(cè)試系統(tǒng)的軟件 /,這使獲得一個(gè)廣泛 的網(wǎng)格組件,以及相關(guān)的風(fēng)力機(jī)模型。 毫無(wú)疑問(wèn)的是,風(fēng)力將發(fā)揮主導(dǎo)作用,增加 國(guó)家電網(wǎng) 的 清潔無(wú)污染能源 。 風(fēng)力方程給出: Pt=1/8ρ π d2v3 Cp 其中 ρ是空氣的密度, d是渦輪半徑,ν是風(fēng)速, Cp 是 風(fēng)力機(jī)將風(fēng)能轉(zhuǎn)換為機(jī)械能的效率 ,稱 風(fēng)能利用系數(shù) ,它 與風(fēng)速,葉片轉(zhuǎn)速,葉片直徑和槳葉節(jié)距角均有關(guān)系,是葉尖速比和槳葉節(jié)距角的函數(shù)。轉(zhuǎn)子繞組供給采用背對(duì)背電壓源變換器 [ 10]。有源電力的發(fā)電機(jī)試驗(yàn)系統(tǒng) 發(fā)電機(jī) N176。對(duì)于這種情況,其結(jié)果是橫向 =196 毫秒。 案例 1:固定速度 故障臨界清除時(shí)間(建)才能確定使用瞬態(tài)模擬。這意味著,在暫態(tài)網(wǎng)絡(luò)穩(wěn)定性增強(qiáng)時(shí),雙饋發(fā)電機(jī)連接而固定測(cè)速發(fā)電機(jī)。 結(jié)論 本文主要集中在評(píng)估的角穩(wěn)定的確定一個(gè)臨界清除時(shí)間(建),這是觀察的行為,發(fā)電機(jī)的測(cè)試系統(tǒng)包括一三個(gè)階段的變化時(shí),幾個(gè)參數(shù)故障。rensen P., Iov F., Blaabjerg F., Initialisation of GridConnected Wind Turbine Models in PowerSystem Simulations, Wind Engineering, 2020, 27(1), p. 2138. 9. Nandigam K., Chowdhury B. H., Power flow and stability models for induction generators used in wind turbines, IEEE Power Engineering Society General Meeting, 2020, 2, p. 20202020. 10. Hansen A. D., Michalke G., Fault ridethrough capability of DFIG wind turbines, Renewable Energy, 2020, 32, p. 15941610.