freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中數(shù)學(xué)試卷易錯易錯壓軸勾股定理選擇題題分類匯編(及答案)(1)-免費閱讀

2025-04-01 22:58 上一頁面

下一頁面
  

【正文】 ∴△EDF是等腰直角三角形.當(dāng)D. E分別為AC、BC中點時,四邊形CDFE是正方形.∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四邊形CEFD=S△AFC.由于△DEF是等腰直角三角形,因此當(dāng)DE最小時,DF也最??;即當(dāng)DF⊥AC時,DE最小,此時DF=BC=4.∴DE=DF=4;當(dāng)△CEF面積最大時,此時△DEF的面積最小.此時S△CEF=S四邊形CEFD?S△DEF=S△AFC?S△DEF=16?8=8,則結(jié)論正確的是①④⑤.故選A.【點睛】本題考查全等三角形的判定與性質(zhì), ,一般證明它們所在三角形全等,如果不存在三角形可作輔助線解決問題.24.B解析:B【分析】設(shè)AB=c,AC=b,BC=a,用a、b、c分別表示,的面積,再利用得b2+c2=a2,求得c值代入即可求得的面積的面積.【詳解】設(shè)AB=c,AC=b,BC=a,由題意得的面積=, 的面積= ∴, 在Rt△ABC中,∠BAC=90176。角直角三角形的性質(zhì)的應(yīng)用,關(guān)鍵是根據(jù)題意畫出圖形,再利用30176。∴∠ABC=90176。AB=6,AC=8, ∴BC==10, 根據(jù)翻折的性質(zhì)可得A′B=AB=6,A′D=AD, ∴A′C=106=4. 設(shè)CD=x,則A′D=8x, 根據(jù)勾股定理可得x2(8x)2=42, 解得x=5, 故CD=5. 故答案為:B.【點睛】本題考察勾股定理和翻折問題,根據(jù)勾股定理把求線段的長的問題轉(zhuǎn)化為方程問題是解決本題的關(guān)鍵.17.C解析:C【分析】設(shè)AB=x,則BC=9-x,根據(jù)三角形兩邊之和大于第三邊,得到x的取值范圍,再利用分類討論思想,根據(jù)勾股定理列方程,計算解答.【詳解】解:∵在△ABC中,AC=AM=3,設(shè)AB=x,BC=9-x,由三角形兩邊之和大于第三邊得:,解得3<x<6,①AC為斜邊,則32=x2+(9-x)2,即x2-9x+36=0,方程無解,即AC為斜邊不成立,②若AB為斜邊,則x2=(9-x)2+32,解得x=5,滿足3<x<6,③若BC為斜邊,則(9-x)2=32+x2,解得x=4,滿足3<x<6,∴x=5或x=4;故選C.【點睛】本題考查三角形的三邊關(guān)系,勾股定理等,分類討論和方程思想是解答的關(guān)鍵.18.D解析:D【分析】由于BC∥AD,那么有∠DAE=∠ACB,由題意可知∠ABC=∠DEA=90176?!郆F=BC=,CF=BF=,∴EF=BE+BF=, 在Rt△CEF中,由勾股定理得:CE=; 故選D.【點睛】本題考查了勾股定理、勾股定理的逆定理、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì);熟練掌握勾股定理和逆定理是解題的關(guān)鍵.11.D解析:D【分析】由勾股定理的逆定理,只要驗證兩小邊的平方和等于最長邊的平方或最大角是否是即可.【詳解】解:、是直角三角形,故能判定是直角三角形;、故能判定是直角三角形;、故能判定是直角三角形;、不是直角三角形,故不能判定是直角三角形;故選:.【點睛】本題考查勾股定理的逆定理的應(yīng)用.判斷三角形是否為直角三角形,可利用勾股定理的逆定理和直角三角形的定義判斷.12.C解析:C【分析】求出兩小邊的平方和長邊的平方,再看看是否相等即可.【詳解】A、62+82=102,此時三角形是直角三角形,故本選項不符合題意; B、52+122=132,此時三角形是直角三角形,故本選項不符合題意;C、32+5262,此時三角形不是直角三角形,故本選項符合題意;D、此時三角形是直角三角形,故本選項不符合題意;故選:C.【點睛】本題主要考查了勾股定理逆定理,關(guān)鍵是掌握判斷一個三角形是不是直角三角形,必須滿足較小兩邊平方的和等于最大邊的平方才能做出判斷.13.C解析:C【解析】試題分析:①∵∠BAC=∠DAE=90176。BD=AD=2DE=,AE=BE=DE=3,∵BC2+BD2=12+(2)2=13=CD2,∴△BCD是直角三角形,∠CBD=90176。是解題的關(guān)鍵,也是解決本題的突破口.7.B解析:B【解析】由題可知(ab)2+a2=(a+b)2,解得a=4b,所以直角三角形三邊分別為3b,4b,5b,當(dāng)b=8時,4b=32,故選B.8.D解析:D【解析】【分析】本題就是把圓柱的側(cè)面展開成矩形,“化曲面為平面”,用勾股定理解決..要求彩帶的長,需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點之間線段最短”得出結(jié)果,在求線段長時,借助于勾股定理.【詳解】如圖,由圖可知,彩帶從易拉罐底端的A處繞易拉罐4圈后到達(dá)頂端的B處,將易拉罐表面切開展開呈長方形,則螺旋線長為四個長方形并排后的長方形的對角線長,設(shè)彩帶最短長度為xcm,∵∵易拉罐底面周長是12cm,高是20cm,∴x2=(124)2+202∴x2=(124)2+202,所以彩帶最短是52cm.故選D.【點睛】本題考查了平面展開??最短路徑問題,圓柱的側(cè)面展開圖是一個矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,9.C解析:C【分析】首先由勾股定理求得AB=10,然后由翻折的性質(zhì)求得BE=4,設(shè)DC=,則BD=,在△BDE中,利用勾股定理列方程求解即可.【詳解】在Rt△ABC中,由勾股定理可知:AB=,由折疊的性質(zhì)可知:DC=DE,AC=AE=6,∠DEA=∠C=90176。+45176。點E為AB的中點,DE⊥AB,交A
點擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1