freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學平行四邊形的綜合題試題含答案解析-免費閱讀

2025-03-30 22:21 上一頁面

下一頁面
  

【正文】 時,四邊形FOBE是菱形.【答案】(1)見解析;(2)30.【解析】【分析】(1)由等角的轉(zhuǎn)換證明出,根據(jù)圓的位置關系證得AC是⊙O的切線.(2)根據(jù)四邊形FOBE是菱形,得到OF=OB=BF=EF,得證為等邊三角形,而得出,根據(jù)三角形內(nèi)角和即可求出答案.【詳解】(1)證明:∵CD與⊙O相切于點E,∴,∴,又∵,∴,∠OBE=∠COA∵OE=OB,∴,∴,又∵OC=OC,OA=OE,∴,∴,又∵AB為⊙O的直徑,∴AC為⊙O的切線;(2)解:∵四邊形FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴為等邊三角形,∴,而,∴.故答案為30.【點睛】本題主要考查與圓有關的位置關系和圓中的計算問題,熟練掌握圓的性質(zhì)是本題的解題關鍵.15.(本題14分)小明在學習平行線相關知識時總結(jié)了如下結(jié)論:端點分別在兩條平行線上的所有線段中,垂直于平行線的線段最短.小明應用這個結(jié)論進行了下列探索活動和問題解決.問題1:如圖1,在Rt△ABC中,∠C=90176?!摺螦KB=60176?!唷螦BN+∠BAM=90176。AD=B39?!郆M=AB=2=BC,即C和M重合,∴∠ACB=90176。C=90176。EC是等腰三角形,又∵EF⊥B′C∴EF為∠B39。=4,∴S=;當點G運動到直線DE上時,F(xiàn)點移動到F39。中,==,t=7,S=15(157)=120.【詳解】(1)設直線DE的直線解析式y(tǒng)=kx+b,將點E(30,0),點D(0,40),∴,∴,∴y=﹣x+40,直線AB與直線DE的交點P(21,12),由題意知F(30,15),∴EF=15;(2)①易求B(0,5),∴BF=10,∴當點F1移動到點B時,t=10=10;②當點H運動到直線DE上時,F(xiàn)點移動到F39。=10;②F點移動到F39。=∠EDG,在△DEM和△DEG中, ,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45176?!螴FH=60176?!唷螮BF=60176。AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中, ∴△BOE≌△DOF(ASA),∴EO=FO,∴四邊形BEDF是平行四邊形;(2)當四邊形BEDF是菱形時,BD⊥EF,設BE=x,則G,Rt△ABC中,AB=BC=,∴AC=,即AC為定值,當C39。在△BAP和△DAP39。在正方形ABCD中,DA=BA,∠BAD=90176。∠ADF=∠C39。G,確定△ACC′的面積中底邊AC為定值2,根據(jù)高的大小確定面積的大小,當C39。;(2)BP+DP=AP,證明詳見解析;(3)﹣1.【解析】【分析】(1)證明∠CDE=∠C39?!唷螦BE+∠BAG=90176。.【解析】試題分析:(1)①根據(jù)正方形的性質(zhì)得DA=DC,∠ADB=∠CDB=45176。.試題解析:(1)①∵四邊形ABCD為正方形,∴DA=DC,∠ADB=∠CDB=45176?!唷螼AN=∠OBM.在△AON與△BOM中,∴△AON≌△BOM(AAS).∴OM=ON,∴矩形OMHN為正方形,∴HO平分∠BHG.(3)將圖形補充完整,如答圖2示,∠BHO=45176。(SAS),得BP=DP39?!郃D=C39?!虯P交PD的延長線于P39?!唷螾39。作C39。D=,OD=AC=1,∴C39。∴∠ADB=30176?!唷螹IJ+∠BIF=120176?!螦DC=90176?!逜B∥DC,∴∠DBC=∠DBE=60176。中,t=4,S=(12+)11=;當點G運動到直線DE上時,在Rt△F39。=15﹣F39。中,==,∴t=7,∴S=15(15﹣7)=120.【點睛】本題考查一次函數(shù)圖象及性質(zhì),正方形的性質(zhì);掌握待定系數(shù)法求函數(shù)解析式,利用三角形的正切值求邊的關系,利用勾股定理在直角三角形中建立邊之間的聯(lián)系,準確確定陰影部分的面積是解題的關鍵.8.現(xiàn)有一張矩形紙片ABCD(如圖),其中AB=4cm,BC=6cm,點E是BC的中點.將紙片沿直線AE折疊,點B落在四邊形AECD內(nèi),記為點B′,過E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置關系;(2)求線段B′C的長,并求△B′EC的面積.【答案】(1)見解析;(2)S△B′EC=.【解析】【分析】(1)由折線法及點E是BC的中點,可證得△B39。交AE于點O,由折線法及點E是BC的中點,∴EB=EB′=EC,∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;又∵△BB39?!嘣赗t△CDF中,由勾股定理得:CF=,∴BF=BCCF=9,由翻折不變性可知,F(xiàn)B=FB′=,∴B′D=DFFB′=.【點睛】四邊形綜合題,考查了矩形的性質(zhì)、翻折變換的性質(zhì)、勾股定理、等腰三角形的判定、平行線的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用翻折不變性解決問題.10.定義:我們把三角形被一邊中線分成的兩個三角形叫做“友好三角形”.性質(zhì):如果兩個三角形是“友好三角形”,那么這兩個三角形的面積相等.理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.應用:如圖②,在矩形ABCD中,AB=4,BC=6,點E在AD上,點F在BC上,AE=BF,AF與BE交于點O.(1)求證:△AOB和△AOE是“友好三角形”;(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.探究:在△ABC中,∠A=30176。利用AAS證明全等,則結(jié)論可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根據(jù)等腰三角形的性質(zhì)可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,則可證四邊形AECF是菱形.【詳解】證明:(1)∵四邊形ABCD是平行四邊形∴AD=BC,CD∥AB,∠B=∠D∵平行四邊形ABCD沿其對角線AC折疊∴BC=B39。.點M和N分別從點B、C同時出發(fā),以相同的速度沿BC、CA向終點C和A運動.連接AM和BN,交于點P.求△APB周長的最大值.【答案】(1)AM⊥BN,證明見解析;(2)△APB周長的最大值4+4;(3)△PAB的周長最大值=2+4.【解析】試題分析:根據(jù)全等三角形的判定SAS證明△ABM≌△BCN,即可證得AM⊥BN;(2)如圖②,以AB為斜邊向外作等腰直角△AEB
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1