【摘要】如圖,在△ABC中,AB=AC.DAD⊥BCBD=CD∠BAD=∠CADAD是BC上的高線AD是BC上的中線AD是∠BAC的平分線性質(zhì)1、等腰三角形的兩底角相等:∠B=∠C性質(zhì)2、等腰三角形三線合一性質(zhì)3、等腰三角形是軸對稱圖形,
2025-08-05 10:34
【摘要】課題: 等腰三角形(第1課時(shí)) 天津市第一中學(xué)丁百靈教學(xué)任務(wù)分析教學(xué)目標(biāo)知識技能1.掌握等腰三角形的有關(guān)概念和性質(zhì);2.熟練運(yùn)用等腰三角形的性質(zhì)解決等腰三角形內(nèi)角以及邊的證明和計(jì)算問題.數(shù)學(xué)思考1.通過觀察等腰三角形的對稱性,發(fā)展形象思維;2.通過動(dòng)手操作、觀察、思考,積累數(shù)學(xué)活
2025-04-17 07:58
【摘要】初中數(shù)學(xué)教學(xué)設(shè)計(jì)等腰三角形教材分析:1、本節(jié)內(nèi)容是七年級下第九章《軸對稱》中的重點(diǎn)部分,是等腰三角形的第一節(jié)課,由于小學(xué)已經(jīng)有等腰三角形的基本概念,故此節(jié)課應(yīng)該是在加深對等腰三角形從軸對稱角度的直觀認(rèn)識的基礎(chǔ)上,著重探究等腰三角形的兩個(gè)定理及其應(yīng)用,如何從對稱角度理解等腰三角形是新教材和舊教材完全不同的出發(fā)點(diǎn),應(yīng)該重新認(rèn)識,把好入門的第一課。2、
2024-11-22 02:41
【摘要】八年級上冊等腰三角形(第4課時(shí))課件說明?本節(jié)課在學(xué)習(xí)了軸對稱、等邊三角形的性質(zhì)及判定的基礎(chǔ)上,探究直角三角形的一條特殊性質(zhì),它反映了直角三角形中的邊角關(guān)系.本節(jié)課是等邊三角形性質(zhì)的簡單運(yùn)用,同時(shí)也為九年級學(xué)習(xí)銳角三角函數(shù)作了一定的知識儲備.?學(xué)習(xí)目標(biāo):1.探索含30°角
2024-11-24 15:53
【摘要】小學(xué)數(shù)學(xué)《等腰三角形》說課稿 老師們: 你們好! 非常高興能有機(jī)會(huì)和大家交流說課活動(dòng),謹(jǐn)此向在座的各位老師學(xué)習(xí)。 今天我說課的內(nèi)容是人教版數(shù)學(xué)八年級上冊第十四章第3節(jié)《等腰三角形》的第一課時(shí),...
2024-12-04 06:25
【摘要】1等腰三角形說課設(shè)計(jì)(第1課時(shí))單位:洪莊楊鄉(xiāng)中姓名:陳俊華2等腰三角形說課設(shè)計(jì)(第1課時(shí))今天我說課的題目是北師大版八年級數(shù)學(xué)下冊第一章第一節(jié)《等腰三角形》第一課時(shí),下面我從教材分析、教法與學(xué)法分析、教學(xué)過程設(shè)
2024-11-24 19:47
【摘要】等腰三角形的判定臨海中學(xué)初二備課組等腰三角形的判定學(xué)習(xí)目標(biāo)自學(xué)指導(dǎo)討論練習(xí)課堂作業(yè)我們在上一節(jié)學(xué)習(xí)了等腰三角形的性質(zhì)?,F(xiàn)在你能回答我一些問題嗎?一、復(fù)習(xí):1、等腰三角形的性質(zhì)定理是什么?等腰三角形的兩個(gè)底角相等。(可以簡稱:等邊對等角)2、這個(gè)定理
2025-08-01 18:01
【摘要】等腰三角形的性質(zhì)數(shù)科院李紫20222202225ABC⑴由“兩邊相等”得到“等腰三角形”.∵△ABC中,AB=AC,∴△ABC是等腰三角形.⑵由“等腰三角形”得到“兩邊相等”.如圖,∵△ABC是等腰三角
2025-08-01 13:41
【摘要】復(fù)習(xí)引入兩腰相等;等腰三角形有哪些特征呢?ABC,簡稱“在同一個(gè)三角形中,等邊對等角”;、底邊上的中線和底邊上的高互相重合。簡稱“等腰三角形三線合一”,對稱軸是底邊的中垂線。?:ΔABC中,已知AB=AC,?圖中有哪些角相等?∠B=∠C在同一個(gè)三角形
【摘要】等腰三角形兩腰相等;等腰三角形兩底角相等;等腰三角形“三線合一”;……問題1:小區(qū)內(nèi)有一個(gè)三角形小花壇,現(xiàn)在想把它分割成兩個(gè)三角形,使之可以種上不同的花。你會(huì)怎么分?ABCP問題2:如果要分割成兩個(gè)等腰三角形呢?原三角形的角度不知道。無法分!從頂點(diǎn)引一條線段問題3:如果花壇
2024-11-24 15:15
【摘要】等腰三角形性質(zhì)的應(yīng)用——復(fù)習(xí)課如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。ABCD121.等邊對等角的應(yīng)用ABCD12解:∵AB=AC,∴∠ABC=∠C又∵BD=BC=AD,∴∠C=∠
【摘要】等腰三角形的性質(zhì)如圖,把一張長方形紙片按圖中的虛線對折,并剪去陰影部分,再把它展開,得△ABCACDBAC和AB有什么關(guān)系?這個(gè)三角形有什么特點(diǎn)?探索:探究ACBBBBBBBB(B)ACB
【摘要】第一篇:【教材分析】等腰三角形 “等腰三角形”教材分析 1、教材的地位和作用:《等腰三角形的性質(zhì)》是初中七年級下冊《三角形的有關(guān)證明》的第二課時(shí),是全等三角形的續(xù)篇。等腰三角形是最常見的圖形,由于...
2024-10-24 19:15
【摘要】宇軒圖書下一頁上一頁末頁目錄首頁第20講等腰三角形考點(diǎn)知識精講宇軒圖書下一頁上一頁末頁目錄首頁考點(diǎn)訓(xùn)練中考典例精析舉一反三考點(diǎn)知識精講
2025-01-15 06:47
【摘要】八年級上冊等腰三角形(第2課時(shí))問題等腰三角形性質(zhì)定理的內(nèi)容是什么?這個(gè)命題的題設(shè)和結(jié)論分別是什么?性質(zhì)定理的條件是:一個(gè)三角形中有兩條邊相等.結(jié)論:這兩條邊所對的角相等.探索等腰三角形的判定定理作頂角的平分線或底邊上的高或底邊的中線,將一個(gè)三角形的問題轉(zhuǎn)化為兩個(gè)全等三
2024-11-24 17:30