【摘要】對數(shù)與對數(shù)運算第一課時對數(shù)的概念三維目標(biāo)定向〖知識與技能〗理解對數(shù)的概念,掌握對數(shù)恒等式及常用對數(shù)的概念,領(lǐng)會對數(shù)與指數(shù)的關(guān)系?!歼^程與方法〗從指數(shù)函數(shù)入手,引出對數(shù)的概念及指數(shù)式與對數(shù)式的關(guān)系,得到對數(shù)的三條性質(zhì)及對數(shù)恒等式?!记楦小B(tài)度與價值觀〗增強數(shù)學(xué)的理性思維能力及用普遍聯(lián)系、變化發(fā)展的眼光看待問題的能
2024-12-08 01:57
【摘要】對數(shù)與對數(shù)運算[備用習(xí)題]()A.10410753aaaaa???B.6522)(yxyxyxy???C.8157332babaabba?D.33)1255(?=5+125125521253??答案:Ba0,r,s∈Q,以下運算中正確
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)跟蹤檢測新人教A版必修4一、選擇題1.O是△ABC內(nèi)一點,且|OA→|=|OB→|=|OC→|,則O是△ABC的()A.重心B.內(nèi)心C.外心D.垂心解析:由于|OA→|=|OB→|=|OC→|,即OA=OB=OC,所以O(shè)點到
2024-12-08 07:03
【摘要】向量減法運算及其幾何意義海口四中閱讀與理解閱讀課本P85頁,10分鐘后檢測探究:向量是否有減法?復(fù)習(xí):實數(shù)減法的意義是什么?答:減去一個數(shù)等于加上這個數(shù)的相反數(shù),即a-b=a+(-b)猜想:向量減法的意義是什么?答:減去一個向量等于加上這個向量的相反向量,即a-b=a+(-b)類比相反數(shù)
2025-07-18 11:57
【摘要】平面幾何中的向量方法學(xué)習(xí)目標(biāo)、垂直、相等、夾角和距離等問題.——向量法和坐標(biāo)法.,體驗向量在解決幾何問題中的工具作用,培養(yǎng)創(chuàng)新精神.合作學(xué)習(xí)一、設(shè)計問題,創(chuàng)設(shè)情境問題1:若O為△ABC重心,則=.問題2:水渠橫斷面是四邊形ABCD,,且||=||,則這個四邊形為.
2024-11-19 20:38
【摘要】課題平面向量基本定理教學(xué)目標(biāo)知識與技能理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義過程與方法在平面內(nèi),當(dāng)一組基底選定后,會用這組基底來表示其他向量情感態(tài)度價值觀啟發(fā)引導(dǎo),講練結(jié)合重點會應(yīng)用平面向量基本定理解決有關(guān)平面向量的綜合問題難點同上教學(xué)設(shè)
【摘要】任意角考查知識點及角度難易度及題號基礎(chǔ)中檔稍難任意角的概念及推廣39象限角的判定1、2、4終邊相同的角及應(yīng)用57、10區(qū)間角的表示6、11確定角所在的象限8121.下列各角中,與60°角終邊相同的角是()A.-300°
2024-12-05 06:49
【摘要】《向量的加法運算及其幾何意義》教案教學(xué)目標(biāo):1、掌握向量的加法運算,并理解其幾何意義;2、會用向量加法的三角形法則和平行四邊形法則作兩個向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問題的能力;3、通過將向量運算與熟悉的數(shù)的運算進行類比,使學(xué)生掌握向量加法運算的交換律和結(jié)合律,并會用它們進行向量計算,滲透類比的數(shù)學(xué)方法;教學(xué)重點:會用向量加法的三角形法則和平行四邊形法則作兩個向量的
2025-08-04 23:07
【摘要】平面向量應(yīng)用舉例命題方向1向量在平面幾何中的應(yīng)用例1求證:直徑所對的圓周角為直角.[分析]本題實質(zhì)就是證明AB→2BC→=0.[證明]設(shè)AO→=a,OB→=b,則AB→=a+b,OC→=a,BC→=a-b,|a|=|b|.
2024-11-19 19:09
【摘要】平面向量數(shù)量積的物理背景及其含義考查知識點及角度難易度及題號基礎(chǔ)中檔稍難向量的數(shù)量積的基本運算3、5向量的夾角與垂直問題1、2、68、1112向量的模47、9、101.若a·b<0,則a與b的夾角θ的取值范圍是()A.??????0,π2
2024-12-05 06:47
【摘要】來源教學(xué)內(nèi)容:§教學(xué)目標(biāo)1.了解向量的物理背景及在物理中的意義2.理解向量、零向量、單位向量、相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量;3.掌握向量的幾何表示,明確向量的長度、零向量、單位向量的幾何意義;4.了解共線向量、平行向量的概念,會根據(jù)圖形判定是否平行、共線、相
2024-12-08 16:21
【摘要】向量的加法【學(xué)習(xí)目標(biāo)】;;,并會用它們進行向量計算【學(xué)習(xí)重難點】重點:向量加法的三角法則、平行四邊形則和加法運算律難點:向量加法的三角法則、平行四邊形則和加法運算律;【自主學(xué)習(xí)】、向量的加法:已知向量a和b,_____________________________________
2024-11-20 01:05
【摘要】對數(shù)與對數(shù)運算班級:__________姓名:__________設(shè)計人__________日期__________課前預(yù)習(xí)·預(yù)習(xí)案【溫馨寄語】你的天賦好比一朵火花,假如你用勤勉辛勞去助燃,它一定會變成熊熊烈火,放出無比的光和熱來。【學(xué)習(xí)目標(biāo)】1.理解對數(shù)的概念,掌握常用對數(shù)及自然對數(shù).2.熟記并能夠運
【摘要】§3.空間向量的數(shù)乘運算知識點一空間向量的運算已知ABCD—A′B′C′D′是平行六面體.(1)化簡12'23AABCAB??(2)設(shè)M是底面ABCD的中心,N是側(cè)面BCC′B′對角線BC′上的34分點,設(shè)'MNABADAA???
2024-12-08 01:49
【摘要】2.2向量的線性運算2.向量的加法情景:請看如下問題:(1)如圖(1),某人從A到B,再從B按原來的方向到C,則兩次位移的和AB→+BC→應(yīng)該是________.(2)如圖(2),飛機從A到B,再改變方向從B到C,則兩次位移的和AB→+BC→應(yīng)該是________.(3)如圖
2024-12-05 10:16