【摘要】第二講曲線的參數(shù)方程1、參數(shù)方程的概念:如圖,一架救援飛機(jī)在離災(zāi)區(qū)地面500m高處以100m/s的速度作水平直線飛行.為使投放救援物資準(zhǔn)確落于災(zāi)區(qū)指定的地面(不記空氣阻力),飛行員應(yīng)如何確定投放時(shí)時(shí)機(jī)呢?提示:即求飛行員在離救援點(diǎn)的水平距離多遠(yuǎn)時(shí),開始投放物資??救援點(diǎn)投放點(diǎn)1、參
2024-11-20 23:57
【摘要】圓錐曲線?解析幾何是在坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn)、用方程表示點(diǎn)的軌跡——曲線(包括直線)。通過研究方程的性質(zhì),進(jìn)一步研究曲線的性質(zhì)。也可以說,解析幾何是用代數(shù)的方法研究幾何問題的一門數(shù)學(xué)學(xué)科。本章是平面解析幾何內(nèi)容中的圓錐曲線部分,是在學(xué)生已掌握平面幾何知識(shí)與平面直角坐標(biāo)系、平面向量、兩點(diǎn)距離公式及基本初等函數(shù)、直線與圓的方程等知識(shí)的基礎(chǔ)上
2024-11-21 02:39
【摘要】《求曲線的方程》引例:在美麗的南沙群島中,甲島與乙島相距8海里,一艘軍艦在海上巡邏,巡邏過程中,從軍艦上看甲乙兩島,保持視角為直角,你認(rèn)為軍艦巡邏的路線應(yīng)是怎樣的曲線,你能為它寫出一個(gè)方程嗎?例1、設(shè)A、B兩點(diǎn)的坐標(biāo)是(-1,-1)和(2,3),求線段AB的垂直平分線的方程?xyoAB思考:①
2024-11-09 08:46
【摘要】2.2雙曲線2.雙曲線的定義與標(biāo)準(zhǔn)方程課堂互動(dòng)講練知能優(yōu)化訓(xùn)練課前自主學(xué)案學(xué)習(xí)目標(biāo)學(xué)習(xí)目標(biāo),幾何圖形及標(biāo)準(zhǔn)方程的推導(dǎo)過程.2.掌握雙曲線的標(biāo)準(zhǔn)方程.3.會(huì)利用雙曲線的定義和標(biāo)準(zhǔn)方程解決簡單的實(shí)際問題.課前自主學(xué)案溫故夯基3已知橢圓方程為5x
2024-11-09 02:17
【摘要】一、轉(zhuǎn)移代入法這個(gè)方法又叫相關(guān)點(diǎn)法或坐標(biāo)代換法.即利用動(dòng)點(diǎn)P’(x’,y’)是定曲線F(x,y)=0上的動(dòng)點(diǎn),另一動(dòng)點(diǎn)P(x,y)依賴于P’(x’,y’),那么可尋求關(guān)系式x’=f(x,y),y’=g(x,y)后代入方程F(x’,y’)=0中,得到動(dòng)點(diǎn)P的軌跡方程例1:已知點(diǎn)A(3,0),點(diǎn)P在圓x2+y2=1的上半圓周上(即y&g
2024-11-09 01:17
【摘要】富源縣第一中學(xué)葉學(xué)理問題1:橢圓的定義是什么?平面內(nèi)與兩個(gè)定點(diǎn)的距離的和等于常數(shù)(大于)的點(diǎn)的軌跡叫做橢圓。21,FF21FF問題2:如果把上述定義中“距離的和”改為“距離的差”那么點(diǎn)的軌跡會(huì)發(fā)生怎樣的變化?平面內(nèi)與兩定點(diǎn)F1,F(xiàn)2的距離的差的絕對(duì)值等于常數(shù)2a
2024-11-21 22:44
【摘要】一、復(fù)習(xí):橢圓、雙曲線、拋物線:平面內(nèi),到一個(gè)定點(diǎn)(焦點(diǎn)F)和一條定直線(準(zhǔn)線l)的距離之比等于常數(shù)(離心率e)的點(diǎn)的軌跡。3.FLxLFxFxL當(dāng)0e1時(shí),方程表示橢圓,F(xiàn)是左焦點(diǎn),l是左準(zhǔn)線。當(dāng)1e時(shí),方程表示雙曲線,F(xiàn)
2025-08-05 04:36
【摘要】求曲線方程一、復(fù)習(xí)回顧曲線的方程和方程的曲線的概念:在直角坐標(biāo)系中,如果某曲線C上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解滿足下列關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解;(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都在曲線上.這個(gè)方程叫做曲線的方程;這個(gè)曲線叫做方程的曲線.
2024-11-10 07:55
【摘要】分式方程說課稿一、教材分析1、說教材今天我說課的內(nèi)容是分式方程,本課是在經(jīng)歷“實(shí)際問題—分式方程—整式方程”的過程中,發(fā)展學(xué)生分析問題,解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。2、教學(xué)目標(biāo)和要求[來源:學(xué)科網(wǎng)]根據(jù)新課標(biāo)的要求及八年級(jí)學(xué)生的認(rèn)知水平,我制定本節(jié)課的教學(xué)目標(biāo)如下:1.使學(xué)生理解分式方程的
2024-12-03 12:21
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識(shí):1、求曲線(或直線)方程的思考方向大體有兩種,一個(gè)方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個(gè)方向是
2025-07-25 00:15
【摘要】.龍文教育個(gè)性化輔導(dǎo)授課案教師:劉嬌學(xué)生:日期:星期:時(shí)段:課題曲線與方程學(xué)情分析教學(xué)目標(biāo)與考點(diǎn)分析1.考查方程的曲線與曲線的方程的對(duì)應(yīng)關(guān)系.2.利用直接法或定義法求軌跡方程.3.結(jié)合平面向量知識(shí)能確定動(dòng)點(diǎn)軌跡,并會(huì)研究軌跡的有關(guān)性質(zhì).教學(xué)重點(diǎn)難
2025-08-07 10:51
【摘要】圓柱坐標(biāo)方程:r=5theta=t*3600z=(sin(*theta-90))+24*t圖1.笛卡兒坐標(biāo)標(biāo)方程:a=10x=3*a*t/(1+(t^3))y=3*a*(t^2)/(1+(t^3))圖2(Helicalcurve)圓柱坐標(biāo)(cylindrical)方程:r=ttheta=1
2025-07-25 07:16
【摘要】Pro/E各種曲線方程集合圓柱坐標(biāo)方程:r=5theta=t*3600z=(sin(*theta-90))+24*t.笛卡兒坐標(biāo)標(biāo)方程:a=10x=3*a*t/(1+(t^3))y=3*a*(t^2)/(1+(t^3))(Helicalcurve)圓柱坐標(biāo)(cylindrical)方程:r=tthet
【摘要】曲線的參數(shù)方程教學(xué)目標(biāo):1.通過分析拋物運(yùn)動(dòng)中時(shí)間與運(yùn)動(dòng)物體位置的關(guān)系,寫出拋物運(yùn)動(dòng)軌跡的參數(shù)方程,體會(huì)參數(shù)的意義。2.分析圓的幾何性質(zhì),選擇適當(dāng)?shù)膮?shù)寫出它的參數(shù)方程。3.會(huì)進(jìn)行參數(shù)方程和普通方程的互化。教學(xué)重點(diǎn):根據(jù)問題的條件引進(jìn)適當(dāng)?shù)膮?shù),寫出參數(shù)方程,體會(huì)參數(shù)的意義。參數(shù)方程和普通方程的互化。教學(xué)難點(diǎn):根據(jù)幾何性質(zhì)選取恰當(dāng)?shù)膮?shù),建立曲線的參數(shù)方程。參數(shù)方程和
2025-06-25 15:21
【摘要】體育說課---說課是為了上好課主講人陳建1、體育說課的概念2、體育說課的內(nèi)容3、體育說課的類型4、體育說課的理論基礎(chǔ)5、體育說課的作用6、體育說課的常見問題及策略7、體育說課視頻和說課稿分析要點(diǎn)體育說課的概念說課的概念說課,作為一種教學(xué)、教研改革的手段,最早是由河南省新鄉(xiāng)市
2025-09-20 14:45