【摘要】立體幾何立體幾何立體幾何立體幾何兩個平面成一定夾角的實例:打開的筆記本電腦;打開的課本等等.?一.二面角平面內(nèi)的一條直線把這個平面分成兩個部分,其中的每一部分都分別叫做一個半平面.從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角.?AB
2025-07-25 17:06
【摘要】立體幾何立體幾何立體幾何立體幾何平面與平面所成的角兩個平面成一定夾角的實例:打開的筆記本電腦;打開的課本等等.?一.二面角平面內(nèi)的一條直線把這個平面分成兩個部分,其中的每一部分都分別叫做一個半平面.從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角.
2024-11-17 07:29
【摘要】回顧知識:空間中一條直線與平面有哪幾種位置關系?(1)直線在平面內(nèi),(2)直線與平面平行,(3)直線與平面相交知識探究(一):直線與平面垂直的概念(垂直)大漠孤煙直ABABABABABABABAB
【摘要】第九章立體幾何9.3直線與直線、直線與平面、平面與平面所成的角創(chuàng)設情境興趣導入9.3直線與直線、直線與平面、平面與平面所成的角1BC在如圖所示的長方體中,直線和直線AD是異面直線,度量1CBC?1DAD?和,發(fā)現(xiàn)它們是相等的.1BC如果在直線AB上任選點P,那么過點P分別作直線與直線AD1CBC?
【摘要】yxo提問:1.若兩條直線的斜率都不存在,說出兩直線平行?或重合的充要條件?3、區(qū)分以下兩組直線的相交程度用什么量刻畫?1234?1l2l3l4l1?3?2?4?1?3?2?4?觀察下列兩組相交直線,自己下定義以便區(qū)分
2024-11-09 01:19
【摘要】第九章直線、平面、簡單幾何體懷化鐵路第一中學二面角(4)——二面角習題課第九章直線、平面、簡單幾何體懷化鐵路第一中學一、朝花夕拾二、兩個平面垂直的判定定理三、兩個平面垂直的性質(zhì)定理一、兩個平面垂直的定義相交成直二面角的兩個平面,叫做互相垂直的平面CDB
2024-11-06 15:28
【摘要】求異面直線所成的角一、手段:空間問題平面化二、要點:,常用到銳角三角函數(shù)的定義、正弦定理、余弦定理三、求法:㈠.利用三角形的中位線平移BECFDAG例ABCD中,E、F分別是AB、CD的中點,AD⊥BC,
2024-11-09 06:00
【摘要】如果代數(shù)與幾何各自分開發(fā)展,那它進步將十分緩慢,而且應用范圍也很有限。但若兩者互相結(jié)合而共同發(fā)展,則就會相互加強,并以快速的步伐向著完美化的方向猛進?!窭嗜?34現(xiàn)實世界中到處有美妙的曲線,……這些曲線和方程息
2025-01-06 16:36
【摘要】一.定義:直線a、b是異面直線,經(jīng)過空間任意一點O,分別引直線a′∥a,b′∥b。我們把直線a′和b′所成的銳角(或直角)叫做異面直線a和b所成的角.說明:1.a(chǎn)和b所成的角的大小與空間點的選取無關.2.實質(zhì):把a和b平行移動使之相交,把抽象的空
2024-10-04 17:39
【摘要】用向量法求二面角例1:在三棱柱ABO—A1B1O1中,平面OBB1O1⊥平面OAB,∠O1OB=600,∠BOA=900,OB=OO1=2,AO=.求3(1)二面角O—AB—O1的大小AOBA1O1B1xyz42arccos例2:已知四棱錐P—ABC
2024-11-09 08:07
【摘要】高二數(shù)學課件:制作:余干二中章華鋒二面角和面面垂直二面角和面面垂直教學目標:掌握判定定理,并會應用培養(yǎng)空間想象能力,推理能力教學難點:判定定理及其綜合應用1、問題:一條直線可以把一個平面分成多少部分?每一部分都叫做半平面2部分2、觀察一下從一條直線出發(fā)的兩個半平面所組成的的圖形叫二面角.
2024-11-09 01:26
【摘要】知能巧整合夯基砌高樓典例悟內(nèi)涵點化新思路真題明考向備考上高速課時作業(yè)工具第五章數(shù)列欄目導引第5課時數(shù)列的綜合應用知能巧整合夯基砌高樓典例悟內(nèi)涵點化新思路真題明考向備考上高速課時作
2025-01-08 00:41
【摘要】高中數(shù)學《直線的方程》教學反思高中數(shù)學《直線的方程》教學反思直線方程的教學是在學習了直線的傾斜角和斜率公式之后推導引入直線的點斜式方程,進一步延伸出其他形式的直線方程和相互轉(zhuǎn)化,為下面直線方程的應用如中點公式、距離公式、直線和圓的位置關系等打下良好的基礎。(一)初步培養(yǎng)了學生平面解析幾何的思想和一般方法。在初中,學生熟知一次函數(shù)y=
2025-02-20 02:37
【摘要】高中數(shù)學《直線的方程》教學反思 高中數(shù)學《直線的方程》教學反思 直線方程的教學是在學習了直線的傾斜角和斜率公式之后推導引入直線的點斜式方程,進一步延伸出其他形式的直線方程和相互轉(zhuǎn)化,為下面直線...
2024-12-05 02:08
【摘要】??????復習回顧"角"是怎樣定義的?從一點出發(fā)的兩條射線所組成的圖形叫做角?;?一條射線繞其端點旋轉(zhuǎn)而成的圖形叫做角。,"異面直線所成的角"是怎樣定義的?直線a、b是異面直線,經(jīng)過空間任意一點O,分別引直線a'//a,b'//b,我們把相
2024-08-14 18:18