【摘要】重積分莊平輝副教授廈門大學(xué)數(shù)學(xué)科學(xué)學(xué)院景潤(rùn)杯數(shù)學(xué)競(jìng)賽系列講座交換重積分的積分次序在直角坐標(biāo)系中兩種不同順序的累次積分的互相轉(zhuǎn)化是一種很重要的手段,具體做法:先把給定的累次積分反過來化為二重積分,求出它的積分區(qū)域D,然后根據(jù)D再把二重積分化為另外一種順序的累次積分。交換累次積分的積分次序例1
2024-10-16 21:32
【摘要】§二重積分?二重積分的概念?二重積分的性質(zhì)?二重積分的計(jì)算?小結(jié)?思考與練習(xí)在這一節(jié),我們將把一元函數(shù)定積分的概念及基本性質(zhì)推廣到二元函數(shù)的定積分,即二重積分,為引出二重積分的概念,我們先來討論兩個(gè)實(shí)際問題。,平面的閉區(qū)域設(shè)有一立體,它的底是DxOy軸的柱面,線平行于的邊界曲線為準(zhǔn)
2024-09-29 19:02
【摘要】首頁上頁返回下頁結(jié)束三重積分的變量代換柱面坐標(biāo)代換球面坐標(biāo)代換三重積分的對(duì)稱性首頁上頁返回下頁結(jié)束.)],,(),,,(),,,([),,(:)3(;0),,(),,(),,()2(),,(),,,(),,,()1(),,(),,,(),,,(:),,(3dwd
2025-07-26 12:13
【摘要】如果積分區(qū)域?yàn)椋海踃-型]其中函數(shù)、在區(qū)間上連續(xù).二重積分的計(jì)算法(1)一、利用直角坐標(biāo)系計(jì)算二重積分應(yīng)用計(jì)算“平行截面面積為已知的立體求體積”的方法,得如果積分區(qū)域?yàn)椋海踄-型]X型區(qū)域的特點(diǎn):穿過區(qū)域且平行于y軸的直線與區(qū)域邊界相
2025-05-15 00:08
【摘要】一、利用直角坐標(biāo)系計(jì)算二重積分二、小結(jié)思考題第二節(jié)二重積分的計(jì)算法(1)如果積分區(qū)域?yàn)椋?bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba一、利用直角坐標(biāo)系(rightanglecoordinatesys
2024-08-30 12:45
【摘要】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應(yīng)用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
2024-08-20 16:42
【摘要】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟(jì)應(yīng)用三、收益流的現(xiàn)值和將來值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
2024-08-30 12:42
【摘要】第五章定積分及其應(yīng)用本章主題詞:曲邊梯形的面積、定積分、變上限的積分、牛頓-萊布尼茨公式、換元積分法、分部積分法、廣義積分。數(shù)學(xué)不僅在摧毀著物理科學(xué)中緊鎖的大門,而且正在侵入并搖撼著生物科學(xué)、心理學(xué)和社會(huì)科學(xué)。會(huì)有這樣一天,經(jīng)濟(jì)的爭(zhēng)執(zhí)能夠用數(shù)學(xué)以一種沒有爭(zhēng)吵的方式來解決,現(xiàn)在想象這一天的到來不再是謊繆的了。
2025-04-28 23:28
【摘要】第6章定積分§定積分概念與性質(zhì)§微積分基本公式§定積分的換元積分法和分部積分法§定積分的應(yīng)用§反常積分初步目錄上一頁目錄下一頁退出回顧曲邊梯形求面積的問題abxyo§定積分的應(yīng)用定積分的
2025-04-29 00:58
【摘要】第三節(jié)定積分的應(yīng)用一、直角坐標(biāo)系中圖形的面積:求由曲線y=f(x)(f(x)≥0),直線x=a,x=b(ab),及x軸所圍成的平面圖形的面積A。aoxyby=f(x)??badxxfA)(aoxyby=f(x)??Aaoxy
2024-10-16 21:13
【摘要】(AdvancedMathematics)?CSMyzx0?P定積分的應(yīng)用習(xí)題課(三)第三章一元函數(shù)積分學(xué)及應(yīng)用l平面圖形的面積l體積l弧長(zhǎng)定積分的應(yīng)用一復(fù)習(xí)定積分的應(yīng)用定積分的應(yīng)用1、定積分應(yīng)用的常用公式(1)平面圖形的面積直角坐標(biāo)情形返回定積分的應(yīng)用若
2025-04-29 00:14
【摘要】§定時(shí)器概述§定時(shí)器的控制§定時(shí)器的四種模式及應(yīng)用§思考題與習(xí)題第六章定時(shí)器及應(yīng)用§定時(shí)器概述§89C51定時(shí)器結(jié)構(gòu)§89C51定時(shí)器功能§89C51定時(shí)器結(jié)構(gòu)l89C51定時(shí)器的結(jié)構(gòu)如圖6-1所示。l有兩個(gè)16位
2025-04-29 00:55
【摘要】上一頁下一頁主頁返回退出上一頁下一頁主頁(一)教學(xué)目的:掌握二重積分的定義和性質(zhì).(二)教學(xué)內(nèi)容:二重積分的定義和性質(zhì).(1)基本要求:掌握二重積分的定義和性質(zhì),二重積分的充要條件,了解有界閉區(qū)域上的連續(xù)函數(shù)的可積性.(2)較高要求:平面點(diǎn)集可求面積的充要條件.上一頁下一頁主頁返回退
2024-11-03 16:40
【摘要】例3AB是底部B不可到達(dá)的一個(gè)建筑物,A為建筑物的最高點(diǎn),設(shè)計(jì)一種測(cè)量建筑物高度AB的方法分析:由于建筑物的底部B是不可到達(dá)的,所以不能直接測(cè)量出建筑物的高。由解直角三角形的知識(shí),只要能測(cè)出一點(diǎn)C到建筑物的頂部A的距離CA,并測(cè)出由點(diǎn)C觀察A的仰角,就可以計(jì)算出建筑物的高。所以應(yīng)該設(shè)法借助解三角形的知識(shí)測(cè)出CA的長(zhǎng)。)
2024-08-25 01:09
【摘要】步進(jìn)指令應(yīng)用舉例例1彩燈自動(dòng)閃爍應(yīng)用實(shí)例某店面名叫“彩云間”,這三個(gè)字的廣告字牌要求實(shí)現(xiàn)閃爍,用HL1~HL3三個(gè)燈點(diǎn)亮“彩云間”三個(gè)字。其閃爍要求如下:在打開閃爍開關(guān)以后,首先是“彩”亮1秒,接著是“云”亮1秒,然后“間”亮1秒,在這之后“彩云間”三字閃爍以。如此循環(huán)。
2024-10-19 03:47