【摘要】......基本不等式及應(yīng)用一、考綱要求:.2.會用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號成立的條件≤a0,
2025-05-13 23:12
【摘要】不等式的綜合應(yīng)用問題【要點】1.不等式的應(yīng)用非常廣泛,它貫穿于整個高中數(shù)學(xué)的始終,諸如集合問題,方程(組)的解的討論.函數(shù)定義域、值域的確定,函數(shù)單調(diào)性的研究,三角、數(shù)列、復(fù)數(shù)、立體幾何中的最值問題、解析幾何中的直線與圓錐曲線位置關(guān)系的討論,等等,這些無一不與不等式有著密切的關(guān)系.2.不等式的應(yīng)用大致可分為兩類:一類是建立不等式求參數(shù)的取
2025-11-02 03:20
【摘要】課堂講練互動活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)1.7定積分的簡單應(yīng)用1.定積分在幾何中的應(yīng)用課堂講練互動活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)【課標(biāo)要求】1.會通過定積分求由兩條或多條曲線圍成的圖形的面積.2.在解決問題的過程中,通過數(shù)形結(jié)合的思想方法,加深對定積分的幾何意義的理解.【核心掃描】由多條曲線圍成的分
2025-05-15 01:35
【摘要】第八講不等式與不等式組一、知識網(wǎng)絡(luò)結(jié)構(gòu)圖二、考點精析考點一:不等式基本性質(zhì)運用1.由x0D.a2,則a的取值范圍是( ?。〢.a(chǎn)0B.aC.a&l
2025-04-16 12:51
【摘要】精品資源待定系數(shù)法在不等式中的應(yīng)用在解(證)不等式問題時,最常用的解題技巧是調(diào)整系數(shù)、拆項、補項。但調(diào)整系數(shù)、拆項、補項時,既要考慮不等式的結(jié)構(gòu),又要符合相關(guān)要求,這些就需要待定系數(shù)法兼顧幾方面的要求。下面舉例說明。例1已知函數(shù)y=的最大值為7,最小值為-1,求此函數(shù)的表達式.分析:求函數(shù)的表達式,實際上就是確定系數(shù)m、n
2025-06-25 16:51
【摘要】解不等式方程的方法:(1)設(shè):弄清題意和題目中的數(shù)量關(guān)系,用字母(x、y)表示題目中的未知數(shù);(2)找:找到能夠表示應(yīng)用題全部含義的一個不等的關(guān)系;(3)列:根據(jù)這個不等的數(shù)量關(guān)系,列出所需的代數(shù)式,從而列出不等式(組);(4)解:解這個所列出的不等式(組),求出未知數(shù)的解集;(5)答:寫出答案,出售時標(biāo)價為1200元,后來由于商品積壓,商店準(zhǔn)備打折出售但要保持利
2025-08-17 07:18
【摘要】指數(shù)不等式、對數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對數(shù)不等式的重要依據(jù)。例5-
2025-06-25 01:24
【摘要】......基本不等式習(xí)專題之基本不等式做題技巧【基本知識】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”)(4)當(dāng)且僅當(dāng)
2025-05-13 23:45
【摘要】不等式與不等式組專題復(fù)習(xí)(一)不等式考點1:不等式的定義知識點::用符號“<”“>”“≤”“≥”表示大小關(guān)系的式子叫做不等式。(像a+2≠a-2這樣用“≠”號表示不等關(guān)系的式子也是不等式。):①x是正數(shù),則x>0;②x是負(fù)數(shù),則x<0;③x是非負(fù)數(shù),則x≥0;④x是非正數(shù),則x≤0;⑤x大于y,則x-y>0;⑥x小于y,則x-y<0;
【摘要】第一篇:不等式3(基本不等式應(yīng)用與證明) 學(xué)習(xí)要求大成培訓(xùn)教案(不等式3基本不等式證明與應(yīng)用)基本不等式 ,,并掌握基本不等式中取等號的條件是:.算術(shù)平均數(shù):幾何平均數(shù) 2.設(shè)a≥0,b≥0則a...
2025-10-19 23:35
【摘要】.....長春工程學(xué)院本科生論文論文題目:淺析微積分在金融領(lǐng)域中的運用學(xué)院管理學(xué)院專業(yè)學(xué)號學(xué)生姓名指導(dǎo)教師姓名
2025-06-26 19:50
【摘要】不等式與不等式組綜合檢測題一、選擇題1,若-a>a,則a必為()2,已知a<0,-1<b<0,則a,ab,ab2之間的大小關(guān)系是()>ab>ab2>ab2>a>a>ab2D.ab<a<ab23,(
2024-11-12 02:11
【摘要】確定不等式中字母的取值范圍建興中學(xué)嚴(yán)增琴的方法。2.通過探究活動,培養(yǎng)學(xué)生的觀察,歸納,探究的能力,體會數(shù)形結(jié)合的數(shù)學(xué)思想。,培養(yǎng)學(xué)生敢于探究未知問題的精神和科學(xué),嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。教學(xué)重,難點教學(xué)目標(biāo):利用不等式組解集的意義和唯一性以及數(shù)軸確定字母的取值范圍。一利用不等式組解集的意義?
2024-11-24 13:48
【摘要】精品資源不等式與不等式組復(fù)習(xí)課一、不等式及一元一次不等式概念判斷下列不等式哪些是一元一次不等式,哪些不是?1、2、3、4、5、二、不等式的性質(zhì)(用符號語言來表示)1、若①②③④2、若三、解下列一元一次不等式并將解集在數(shù)軸上表示。①
【摘要】高二數(shù)學(xué)競賽班二試講義第一講琴生不等式、冪平均不等式一、知識要點:1.琴生不等式凸函數(shù)的定義:設(shè)連續(xù)函數(shù)的定義域為,對于區(qū)間內(nèi)任意兩點,都有,則稱為上的下凸(凸)函數(shù);反之,若有,則稱為上的上凸(凹)函數(shù)。琴生(Jensen)不等式(1905年提出):若為上的下凸(凸)函數(shù),則(想象邊形的重心在圖象的上方,個點重合時“邊形”的重心在圖
2025-08-04 18:32