【摘要】期末總復(fù)習(xí)三、三角形中的邊角關(guān)系、命題與證明2022秋季數(shù)學(xué)八年級上冊?HK【重難點剖析】重難點1三角形的三邊關(guān)系【例1】(莆田中考)已知三角形的兩邊長分別為4cm和9cm,則下列長度的四條線段中能作為第三邊的是()A.13cmB.6cmC.5cm
2025-06-12 01:42
【摘要】第十一章三角形與三角形有關(guān)的角三角形的內(nèi)角第1課時三角形的內(nèi)角和2022秋季數(shù)學(xué)八年級上冊?R三角形的內(nèi)角和定理三角形的內(nèi)角和等于.自我診斷1.(四市中考)△ABC中,∠A=60°,∠B=40°,則∠C等于()A
2025-06-13 13:58
【摘要】流程學(xué)習(xí)目標(biāo)預(yù)習(xí)反饋名校講壇鞏固訓(xùn)練課堂小結(jié)11.2與三角形有關(guān)的角11.三角形的內(nèi)角第1課時三角形的內(nèi)角和學(xué)目習(xí)標(biāo).(求三角形的角的度數(shù)).新課導(dǎo)入:在一個直角三角形里住著三個內(nèi)角
2025-06-12 01:44
【摘要】第十一章三角形與三角形有關(guān)的角三角形的內(nèi)角第2課時直角三角形的判定與性質(zhì)2022秋季數(shù)學(xué)八年級上冊?R直角三角形的性質(zhì)直角三角形的兩個銳角.自我診斷1.在△ABC中,∠A=36°,∠C是直角,則∠B=.直角三角形的判定
2025-06-14 13:29
【摘要】第十二章全等三角形三角形全等的判定第2課時邊角邊2022秋季數(shù)學(xué)八年級上冊?R用“SAS”判定兩個三角形全等兩邊和它們的夾角對應(yīng)相等的兩個三角形(可以簡寫成“邊角邊”或“SAS”).全等自我診斷1.如圖,AB=AC,∠1=∠2,則
2025-06-13 13:59
2025-06-13 13:30
2025-06-12 12:35
【摘要】?生活中有許多使用三角形的實例你能從下圖中找出三角形嗎?嗎?1、三角形的定義-------由三條線段首尾順次連結(jié)所組成的圖形,叫做三角形。2、三角形的表示:ABC三角形用符號“△”表示記作“△ABC”讀作“三角形ABC”例說出圖中有
2024-12-08 01:56
2025-06-12 07:49
【摘要】第3課時 利用“角邊角”“角角邊”判定三角形全等學(xué)前溫故新課早知判定三角形全等的方法:(1)三邊分別 的兩個三角形全等(可以簡寫成“ ”或“ ”).?(2)兩邊和它們的夾角分別 的兩個三角形全等(可以簡寫成“ ”或“ ”).?相等邊邊邊
2025-06-19 18:45
【摘要】第十二章全等三角形三角形全等的判定第3課時角邊角、角角邊2022秋季數(shù)學(xué)八年級上冊?R用“ASA”判定兩個三角形全等有兩角和它們的對應(yīng)相等的兩個三角形全等(簡寫成“角邊角”或“ASA”).自我診斷1.如圖,欲證△ABC≌△DFE,已知∠A=
2025-06-13 14:00
【摘要】第十二章全等三角形三角形全等的判定第2課時運用“邊角邊”證三角形全等三角形全等的判定方法二:的兩個三角形全等.(簡寫為“”或“”)兩邊和它們的夾角對應(yīng)相等SAS邊角邊知識點利用“SA
2025-06-12 13:46
【摘要】第14章全等三角形三角形全等的判定第2課時2022秋季數(shù)學(xué)八年級上冊?HKASA定理的應(yīng)用自我診斷1.若∠P=∠A,∠Q=∠B,并且使△PQR≌△ABC,則必須具備的條件是()A.PQ=BCB.PQ=AC
2025-06-20 20:23
2025-06-17 01:49