freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

直流無刷電動機(jī)研發(fā)設(shè)計畢業(yè)論文-預(yù)覽頁

2025-07-13 13:36 上一頁面

下一頁面
 

【正文】 發(fā)現(xiàn)和了解一些有用的基本編程原則。程序前面板是圖形用戶界面,也就是VI的虛擬儀器面板,用于模擬真實(shí)儀器儀表的面板,功能類似于傳統(tǒng)儀器的前面板。其中端口被用來同程序前面板的控制和顯示傳遞數(shù)據(jù),節(jié)點(diǎn)被用來實(shí)現(xiàn)函數(shù)和功能調(diào)用,圖框被用來實(shí)現(xiàn)結(jié)構(gòu)化程序控制命令,而連線代表程序執(zhí)行過程中的數(shù)據(jù)流,定義了框圖內(nèi)的數(shù)據(jù)流動方向。 PCI控制卡的各子程序設(shè)計 轉(zhuǎn)速控制程序轉(zhuǎn)速控制程序主要完成對轉(zhuǎn)速控制的輸出,電壓信號直接由PCI1710輸出到驅(qū)動器即可進(jìn)行調(diào)速。 轉(zhuǎn)速控制程序流程圖(1)。Error out為系統(tǒng)出現(xiàn)錯誤時的輸出。 AOVoltageOUT的程序結(jié)構(gòu)和編程連接示意圖其中channel為所選輸出通道,為采集卡輸出端子板上與電機(jī)驅(qū)動器電壓輸入端相連的通道,本次設(shè)計采用0號通道AO0_OUT,故設(shè)置為0;Voltage為模擬輸出電壓值設(shè)定,輸入一定的電壓值對應(yīng)著一定的轉(zhuǎn)速。這一模塊除了用到3個通用的VIs:SelectDevicePop、DeviceOpen和DeviceClose外,還用到3個低級I/O Vis:SingleChannelINTSetup、BufferChangeHandler和OverrunHandler。通過FAIINTStart數(shù)據(jù)端設(shè)置內(nèi)/外觸發(fā)源,采樣率(SampleRate),采集通道,增益(本次設(shè)計中電壓幅值+/5V,故設(shè)置為0),是/否循環(huán)等參數(shù)。當(dāng)模擬量輸入的緩沖區(qū)數(shù)據(jù)準(zhǔn)備好是,AI BufferReady會輸出“1”的信號,進(jìn)行下一步的信號傳輸。當(dāng)BufferChange端接收到WaitFastAIOEvent的AI BufferReady信號,DisplayBuffer端就會繼續(xù)傳輸脈沖信號的相關(guān)數(shù)據(jù)到脈沖信號處理單元,進(jìn)行脈沖的分析和轉(zhuǎn)速顯示。、PID 。 直流無刷電機(jī)控制系統(tǒng)程序前面板 直流無刷電機(jī)控制系統(tǒng)程序框圖第五章 實(shí)驗(yàn)與結(jié)論 硬件的安裝與測試首先研華提供的驅(qū)動光盤插入計算機(jī),安裝板卡的驅(qū)動程序及配置軟件(DevMgr),然后關(guān)機(jī)。 系統(tǒng)的實(shí)物連接圖在PCI1710安裝完成后,需進(jìn)行板卡的功能測試。例如,在“Manual Output”,點(diǎn)擊“Out”按鈕,這個值可用萬用表測得。輸入轉(zhuǎn)速“1000”,點(diǎn)擊“運(yùn)行”。 轉(zhuǎn)速檢測程序測試打開LabVIEW的轉(zhuǎn)速控制程序,選擇采樣通道“13”,采樣率為1000Hz,當(dāng)前設(shè)置轉(zhuǎn)速為1000r/min。表51 控制程序與檢測程序測試表控制程序設(shè)定轉(zhuǎn)速(r/min)20040060080010001200控制電壓(V)2驅(qū)動器檢測轉(zhuǎn)速(r/min)1073115187149171118檢測程序檢測轉(zhuǎn)速(r/min)1103195357339371153 PID程序測試本文采用試湊法來整定PID算法的參數(shù),這里給出600r/min和1000r/min的PID測試情況。 分析與結(jié)論理想情況下,無刷直流電機(jī)的三個霍爾傳感器的輸出信號之間相差120電角度。因此在開環(huán)控制時,直流無刷電機(jī)的轉(zhuǎn)速誤差會隨著轉(zhuǎn)速的減小而增大,根據(jù)測試結(jié)果,轉(zhuǎn)速設(shè)置為200r/min的時候,誤差能達(dá)到46%,轉(zhuǎn)速設(shè)置為1000r/min的時候,誤差只有8%。本文達(dá)到了預(yù)期的實(shí)驗(yàn)效果,從而也證明了利用PCI1710運(yùn)動控制卡和PID算法對直流無刷電機(jī)進(jìn)行轉(zhuǎn)速的控制調(diào)節(jié)的可行性,驗(yàn)證了基于PCI控制卡的直流無刷電機(jī)控制系統(tǒng)的正確性。2. PID參數(shù)的整定只是停留在經(jīng)驗(yàn)法,要求更好的效果還需要更多的計算,包括電機(jī)數(shù)學(xué)模型的搭建;3. 并希望能夠使用matlab和LabVIEW聯(lián)合編程引入分?jǐn)?shù)階PID算法,進(jìn)行更為快速精確地PID調(diào)節(jié)。還有謝謝我周圍的同窗朋友學(xué)長學(xué)姐,他們給了我無數(shù)的關(guān)心和鼓勵,也讓我的大學(xué)生活充滿了溫暖和歡樂。最后,我還要感謝父母,謝謝他們給了我無私的愛,為我求學(xué)所付出的巨大犧牲和努力。這方法將開關(guān)控制的周期性的電力電子系統(tǒng)轉(zhuǎn)換為一個統(tǒng)一且獨(dú)立的系統(tǒng)。PID增益通過在線方式的神經(jīng)網(wǎng)絡(luò)自動調(diào)整。多變的端子電壓可以由一個可控整流得到的或DCDC變換器。每個開關(guān)狀態(tài)期間,該電路表現(xiàn)為一個線性電路,其它電路元件(R,L,C)是線性的。目前有很多有關(guān)于電力電子變換器的分析方法。但小信號模型不能準(zhǔn)確地表達(dá)系統(tǒng)的動態(tài)。在這項(xiàng)研究中,目前利用峰值電流作為控制變量的程序控制已經(jīng)用來代替直接負(fù)荷比(d)控制。近年來,在實(shí)際控制中常使用智能控制。給出了所提出控制器的分析,設(shè)計與仿真。在3章中,它提出了統(tǒng)一的大信號電路模型。所需的負(fù)載兩端的電壓可以通過使用功率半導(dǎo)體器件(圖1)獲得。在那里,La:電樞電感,Ra:電樞電阻,ia:電樞電流,U:直流電壓源,ua:直流電動機(jī)端電壓,Ec:反電動勢,TL:負(fù)載轉(zhuǎn)矩,Te:電機(jī)(氣隙)的扭矩,Ta:加速轉(zhuǎn)矩,J:時刻慣性,B1:粘滯摩擦系數(shù),ωm:電機(jī)的速度。電路中圖1分為兩個不同的拓?fù)浣Y(jié)構(gòu)與有源開關(guān)狀態(tài)(Q),“1”時,主動開關(guān)和二極管是關(guān)閉的,(0<t<)?;旧?,它使用了狀態(tài)空間平均技術(shù)。除了開關(guān)(Q,D)是線性的,這對所有剩余的元素都是適用的。平均電路模型是只由一個狀態(tài)空間方程表示。在圖2中,當(dāng)有源開關(guān)閉合,電感電流流過Q和iq(t)等于iL(t)。平均過程是由電路本身直接實(shí)現(xiàn),而不是以狀態(tài)空間方程根據(jù)有源開關(guān)狀態(tài)處理兩種不同的平均電路的拓?fù)浣Y(jié)構(gòu)。圖2 降壓轉(zhuǎn)換器電路在一個開關(guān)周期(TS)內(nèi)通過開關(guān)的電流平均值表示如圖3。在仿真過程中可以從(3)和(6),在每一個周期內(nèi)平均值的變化可以有計算變量的方法計算。這個開關(guān)模型很好地模擬了一個統(tǒng)一的時間獨(dú)立形式方程的驅(qū)動系統(tǒng)。可以看出,平均解從圖5和圖6精確的解決方案中通過。閉環(huán)速度控制他勵直流電機(jī)驅(qū)動系統(tǒng)如圖7。通過將神經(jīng)網(wǎng)絡(luò)引入控制方案,它可以在線調(diào)整這些參數(shù)。這個過程由改變占空比實(shí)現(xiàn),如圖7。圖9中給出了圖8中對應(yīng)不同速度所需的占空比(D)。本章中提出的大信號的平均直流電機(jī)驅(qū)動系統(tǒng)提出了一個全球性的系統(tǒng)動力學(xué)觀點(diǎn)。參考文獻(xiàn)1. Middlebrook, Cuk, S.: A General Unified Approach to odelling SwitchingConverter Power Stages. IEEE Power Elo. Spec. Conf., USA (1976)2. Mahdavi, J., et al.: Analysis of Power Elo. Converters Using the Generalized State Space Averaging Approach. IEEE Trans. on Cir..and Sys., , (1997)3. Liu,Y. and Sen, P.: A General Unified Large Signal Model for Current Programmed DCto DC Converters. IEEE Trans. on Power Elo., ,July (1994)4. Cakir,B.,Yildiz, et al.: DC Motor Control by Using Computer Based Fuzzy Technique. IEEE Proc., 14th Annual Applied Power Elo. Conf. , Texas (1999)5. Yildiz, .: A Unified LargeSignal Model for DCDC Converters. ElectricElectronicComputer Engineering., 9th National Conf., Kocaeli, Turkey (2001)6. Fukuda, T., Shibata, T.: Theory and Application of Neural Networks for Industrial Control System, IEEE Trans. on Ind. Elec. , , (1992)7. Krishnan,R.: Drives, Modeling, Analysis and Control. P..Hall, (2001)8. Omatu, S., et al.: NeuroControl and Its Applications, SpringerVerlag, Berlin Heidelberg, New York (1996)附錄二 外文原文Speed Control of Averaged DC Motor Drive Systemby Using NeuroPID ControllerAbstract. The speed control of a separately excited DC motor driven by DCDC converter is realized by using NeuroPID controller. Firstly, a general and unified largesignal averaged circuit model for DCDC converters is given. This method converts power electronic systems, which are periodic timevariant because of their switching operation, to unified and time independent systems. Therefore, it can be obtained conveniently and straightforwardly various analysis and control processes related to DC motor drive system. Some largesignal variations such as speed, voltage and current relating to DC motor, speed control are easily obtained by using the averaged circuit model. A selftuning PID neurocontroller is developed for speed control on this model. The PID gains are tuned automatically by the neural network in an online way. The controller developed in this work, based on neural network (NN), offers inherent advantages over conventional PID controller for DC motor drive systems.1 IntroductionThe speed control of DC motor with power electronic systems is obtained generally by changing its terminal voltage. When terminal voltage of DC motor is increased between zero and nominal value, the speed can be also controlled from zero to nominal value. Changeable terminal voltage can be obtained by a controlled rectifier or DCDC converter. Here, speed control of a separately excited DC motor driven by DCDC converter, which is applied the average circuit technique on, is realized. Power electronic converters are periodic timevariant systems because of theirn switching operation. In the analysis of these circuits, circuit equations are separately obtained for every switchstate. During each switch state, the circuit behaves as a linear circuit provided that other circuit elements (R,L,C) are linear. Over a switching period (Ts), the exact solution is obtained by solving sets of circuit equations respectively. But, the design of switching converters, the controller design relating to motor speed control are easily realized by using a circuit model which is valid for the entire switching period (Ts). Therefore, the average circuit approach which
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1