freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)第一章計(jì)數(shù)原理全套教案新人教a版選修-預(yù)覽頁

2025-07-04 02:47 上一頁面

下一頁面
 

【正文】 種不同的方法.(3)知識(shí)應(yīng)用,女生24名. 現(xiàn)要從中選出男、女生各一名代表班級(jí)參加比賽,共有多少種不同的選法?分析:選出一組參賽代表,可以分兩個(gè)步驟.第 l 步選男生.第2步選女生.解:第 1 步,從 30 名男生中選出1人,有30種不同選擇;第 2 步,從24 名女生中選出1人,有 24 種不同選擇.根據(jù)分步乘法計(jì)數(shù)原理,共有3024 =720種不同的選法.探究:如果完成一件事需要三個(gè)步驟,做第1步有種不同的方法,做第2步有種不同的方法,做第3步有種不同的方法,那么完成這件事共有多少種不同的方法?如果完成一件事情需要個(gè)步驟,做每一步中都有若干種不同方法,那么應(yīng)當(dāng)如何計(jì)數(shù)呢?一般歸納: 完成一件事情,需要分成n個(gè)步驟,做第1步有種不同的方法,做第2步有種不同的方法……種不同的方法.理解分步乘法計(jì)數(shù)原理:分步計(jì)數(shù)原理針對(duì)的是“分步”問題,完成一件事要分為若干步,各個(gè)步驟相互依存,完成任何其中的一步都不能完成該件事,只有當(dāng)各個(gè)步驟都完成后,才算完成這件事.3.理解分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理異同點(diǎn)①相同點(diǎn):都是完成一件事的不同方法種數(shù)的問題②不同點(diǎn):分類加法計(jì)數(shù)原理針對(duì)的是“分類”問題,完成一件事要分為若干類,各類的方法相互獨(dú)立,各類中的各種方法也相對(duì)獨(dú)立,用任何一類中的任何一種方法都可以單獨(dú)完成這件事,是獨(dú)立完成;而分步乘法計(jì)數(shù)原理針對(duì)的是“分步”問題,完成一件事要分為若干步,各個(gè)步驟相互依存,完成任何其中的一步都不能完成該件事,只有當(dāng)各個(gè)步驟都完成后,才算完成這件事,是合作完成.例2 .如圖,要給地圖A、B、C、D四個(gè)區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種? 解: 按地圖A、B、C、D四個(gè)區(qū)域依次分四步完成, 第一步, m1 = 3 種, 第二步, m2 = 2 種, 第三步, m3 = 1 種, 第四步, m4 = 1 種,所以根據(jù)乘法原理, 得到不同的涂色方案種數(shù)共有N = 3 2 11 = 6 變式1,如圖,要給地圖A、B、C、D四個(gè)區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種? 2若顏色是2種,4種,5種又會(huì)什么樣的結(jié)果呢?練習(xí)2.現(xiàn)有高一年級(jí)的學(xué)生 3 名,高二年級(jí)的學(xué)生 5 名,高三年級(jí)的學(xué)生 4 名. ( 1 )從中任選1 人參加接待外賓的活動(dòng),有多少種不同的選法?村去 C 村,不同 ( 2 )從 3 個(gè)年級(jí)的學(xué)生中各選 1 人參加接待外賓的活動(dòng),有多少種不同的選法? 第三課時(shí)3 綜合應(yīng)用例1. 書架的第1層放有4本不同的計(jì)算機(jī)書,第2層放有3本不同的文藝書,第3層放2本不同的體育書.①從書架上任取1本書,有多少種不同的取法?②從書架的第3層各取1本書,有多少種不同的取法?③從書架上任取兩本不同學(xué)科的書,有多少種不同的取法?【分析】①要完成的事是“取一本書”,由于不論取書架的哪一層的書都可以完成了這件事,因此是分類問題,應(yīng)用分類計(jì)數(shù)原理.②要完成的事是“從書架的第3層中各取一本書”,由于取一層中的一本書都只完成了這件事的一部分,只有第3層都取后,才能完成這件事,因此是分步問題,應(yīng)用分步計(jì)數(shù)原理.③要完成的事是“取2本不同學(xué)科的書”,先要考慮的是取哪兩個(gè)學(xué)科的書,如取計(jì)算機(jī)和文藝書各1本,再要考慮取1本計(jì)算機(jī)書或取1本文藝書都只完成了這件事的一部分,應(yīng)用分步計(jì)數(shù)原理,上述每一種選法都完成后,這件事才能完成,因此這些選法的種數(shù)之間還應(yīng)運(yùn)用分類計(jì)數(shù)原理.解: (1) 從書架上任取1本書,有3類方法:第1類方法是從第1層取1本計(jì)算機(jī)書,有4 種方法;第2 類方法是從第2 層取1本文藝書,有3 種方法;第3類方法是從第 3 層取 1 本體育書,有 2 種方法.根據(jù)分類加法計(jì)數(shù)原理,不同取法的種數(shù)是 =4+3+2=9。 子模塊 4 或子模塊 5 中的子路徑共有38 + 43 = 81 (條) . 又由分步乘法計(jì)數(shù)原理,整個(gè)模塊的執(zhí)行路徑共有9181 = 7 371(條). 在實(shí)際測試中,程序員總是把每一個(gè)子模塊看成一個(gè)黑箱,即通過只考察是否執(zhí)行了正確的子模塊的方式來測試整個(gè)模塊.這樣,他可以先分別單獨(dú)測試 5 個(gè)模塊,以考察每個(gè)子模塊的工作是否正常.總共需要的測試次數(shù)為18 + 45 + 28 + 38 + 43 =172. 再測試各個(gè)模塊之間的信息交流是否正常,只需要測試程序第1 步中的各個(gè)子模塊和第 2 步中的各個(gè)子模塊之間的信息交流是否正常,需要的測試次數(shù)為32=6 . 如果每個(gè)子模塊都工作正常,并且各個(gè)子模塊之間的信息交流也正常,那么整個(gè)程序模塊就工作正常.這樣,測試整個(gè)模塊的次數(shù)就變?yōu)?172 + 6=178(次). 顯然,178 與7371 的差距是非常大的.你看出了程序員是如何實(shí)現(xiàn)減少測試次數(shù)的嗎?鞏固練習(xí):,從甲地到乙地有2條路可通,從乙地到丙地有3條路可通。至于誰是“接受單位”,不要管它在生活中原來的意義,“接受單位”,于是,“多”只要“少”.②.被分配元素和接受單位的每個(gè)成員都有“歸宿”,并且不限制一對(duì)一的分配問題,方法是分組問題的計(jì)算公式乘以.1.2.1排列教學(xué)目標(biāo):知識(shí)與技能:了解排列數(shù)的意義,掌握排列數(shù)公式及推導(dǎo)方法,從中體會(huì)“化歸”的數(shù)學(xué)思想,并能運(yùn)用排列數(shù)公式進(jìn)行計(jì)算。同樣,問題 2 可以歸結(jié)為:從4個(gè)不同的元素a, b, c,d中任取 3 個(gè),然后按照一定的順序排成一列,共有多少種不同的排列方法?所有不同排列是 abc, abd, acb, acd, adb, adc,bac, bad, bca, bcd, bda, bdc,cab, cad, cba, cbd, cda, cdb,dab, dac, dba, dbc, dca, dcb.共有432=24種.樹形圖如下 a b c     d   b?。恪。洹。帷。恪。洹 。帷。狻。洹 。帷。狻。?.排列的概念:從個(gè)不同元素中,任取()個(gè)元素(這里的被取元素各不相同)按照一定的順序排成一列,叫做從個(gè)不同元素中取出個(gè)元素的一個(gè)排列說明:(1)排列的定義包括兩個(gè)方面:①取出元素,②按一定的順序排列; (2)兩個(gè)排列相同的條件:①元素完全相同,②元素的排列順序也相同3.排列數(shù)的定義:從個(gè)不同元素中,任?。ǎ﹤€(gè)元素的所有排列的個(gè)數(shù)叫做從個(gè)元素中取出元素的排列數(shù),用符號(hào)表示注意區(qū)別排列和排列數(shù)的不同:“一個(gè)排列”是指:從個(gè)不同元素中,任取個(gè)元素按照一定的順序排成一列,不是數(shù);“排列數(shù)”是指從個(gè)不同元素中,任?。ǎ﹤€(gè)元素的所有排列的個(gè)數(shù),是一個(gè)數(shù)所以符號(hào)只表示排列數(shù),而不表示具體的排列4.排列數(shù)公式及其推導(dǎo):由的意義:假定有排好順序的2個(gè)空位,從個(gè)元素中任取2個(gè)元素去填空,一個(gè)空位填一個(gè)元素,每一種填法就得到一個(gè)排列,反過來,任一個(gè)排列總可以由這樣的一種填法得到,因此,所有不同的填法的種數(shù)就是排列數(shù).由分步計(jì)數(shù)原理完成上述填空共有種填法,∴=由此,求可以按依次填3個(gè)空位來考慮,∴=,求以按依次填個(gè)空位來考慮,排列數(shù)公式: ()說明:(1)公式特征:第一個(gè)因數(shù)是,后面每一個(gè)因數(shù)比它前面一個(gè)少1,最后一個(gè)因數(shù)是,共有個(gè)因數(shù);(2)全排列:當(dāng)時(shí)即個(gè)不同元素全部取出的一個(gè)排列全排列數(shù):(叫做n的階乘) 另外,我們規(guī)定 0! =1 .例1.用計(jì)算器計(jì)算: (1); (2)。是一個(gè)特殊的元素.一般的,我們可以從特殊元素的排列位置人手來考慮問題解法 1 :由于在沒有重復(fù)數(shù)字的三位數(shù)中,百位上的數(shù)字不能是O,因此可以分兩步完成排列.第1步,排百位上的數(shù)字,可以從1到9 這九個(gè)數(shù)字中任選 1 個(gè),有種選法;第2步,排十位和個(gè)位上的數(shù)字,可以從余下的9個(gè)數(shù)字中任選2個(gè),有種選法( 5) .根據(jù)分步乘法計(jì)數(shù)原理,所求的三位數(shù)有=998=648(個(gè)) .解法 2 : 一6 所示,符合條件的三位數(shù)可分成 3 類.每一位數(shù)字都不是位數(shù)有 A 母個(gè),個(gè)位數(shù)字是 O 的三位數(shù)有揭個(gè),十位數(shù)字是 0 的三位數(shù)有揭個(gè).根據(jù)分類加法計(jì)數(shù)原理,符合條件的三位數(shù)有=648個(gè).解法 3 :從0到9這10個(gè)數(shù)字中任取3個(gè)數(shù)字的排列數(shù)為,其中 O 在百位上的排列數(shù)是,它們的差就是用這10個(gè)數(shù)字組成的沒有重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù),即所求的三位數(shù)的個(gè)數(shù)是=109898=648.對(duì)于例9 這類計(jì)數(shù)問題,可用適當(dāng)?shù)姆椒▽栴}分解,而且思考的角度不同,就可以有不同的解題方法.解法 1 根據(jù)百位數(shù)字不能是。對(duì)于較復(fù)雜的問題,一般都有兩個(gè)方向的列式途徑,一個(gè)是“正面湊”,一個(gè)是“反過來剔”.前者指,按照要求,一點(diǎn)點(diǎn)選出符合要求的方案;后者指,先按全局性的要求,選出方案,再把不符合其他要求的方案剔出去.了解排列數(shù)的意義,掌握排列數(shù)公式及推導(dǎo)方法,從中體會(huì)“化歸”的數(shù)學(xué)思想,并能運(yùn)用排列數(shù)公式進(jìn)行計(jì)算。過程與方法:了解組合數(shù)的意義,理解排列數(shù)與組合數(shù) 之間的聯(lián)系,掌握組合數(shù)公式,能運(yùn)用組合數(shù)公式進(jìn)行計(jì)算。證明:原式左端可看成一個(gè)班有個(gè)同學(xué),從中選出個(gè)同學(xué)組成興趣小組,在選出的個(gè)同學(xué)中,個(gè)同學(xué)參加數(shù)學(xué)興趣小組,余下的個(gè)同學(xué)參加物理興趣小組的選法數(shù)。證明:設(shè)某班有個(gè)男同學(xué)、個(gè)女同學(xué),從中選出個(gè)同學(xué)組成興趣小組,可分為類:男同學(xué)0個(gè),1個(gè),…,個(gè),則女同學(xué)分別為個(gè),個(gè),…,0個(gè),共有選法數(shù)為…。設(shè)某班有個(gè)同學(xué),選出若干人(至少1人)組成興趣小組,并指定一人為組長。例17.證明:…?!喙灿?種選法。不同點(diǎn) ,六、課后作業(yè): 七、板書設(shè)計(jì)(略) 八、教學(xué)反思:排列組合問題聯(lián)系實(shí)際生動(dòng)有趣,題型多樣新穎且貼近生活,解法靈活獨(dú)到但不易掌握,許多學(xué)生面對(duì)較難問題時(shí)一籌莫展、無計(jì)可施,尤其當(dāng)從正面入手情況復(fù)雜、不易解決時(shí),可考慮換位思考將其等價(jià)轉(zhuǎn)化,使問題變得簡單、明朗。教學(xué)反思:1注意區(qū)別“恰好”與“至少”從6雙不同顏色的手套中任取4只,其中恰好有一雙同色的手套的不同取法共有多少種2特殊元素(或位置)優(yōu)先安排將5列車停在5條不同的軌道上,其中a列車不停在第一軌道上,b列車不停在第二軌道上,那么不同的停放方法有種3“相鄰”用“捆綁”,“不鄰”就“插空”七人排成一排,甲、乙兩人必須相鄰,且甲、乙都不與丙相鄰,則不同的排法有多少種混合問題,先“組”后“排”對(duì)某種產(chǎn)品的6件不同的正品和4件不同的次品,一一進(jìn)行測試,至區(qū)分出所有次品為止,若所有次品恰好在第5次測試時(shí)全部發(fā)現(xiàn),則這樣的測試方法有種可能?分清排列、組合、等分的算法區(qū)別(1)今有10件不同獎(jiǎng)品,從中選6件分給甲一件,乙二件和丙三件,有多少種分法? (2) 今有10件不同獎(jiǎng)品, 從中選6件分給三人,其中1人一件1人二件1人三件, 有多少種分法?(3) 今有10件不同獎(jiǎng)品, 從中選6件分成三份,每份2件, 有多少種分法? 分類組合,隔板處理從6個(gè)學(xué)校中選出30名學(xué)生參加數(shù)學(xué)競賽,每校至少有1人,這樣有幾種選法?1.3.1二項(xiàng)式定理教學(xué)目標(biāo):知識(shí)與技能:進(jìn)一步掌握二項(xiàng)式定理和二項(xiàng)展開式的通項(xiàng)公式過程與方法:能解決二項(xiàng)展開式有關(guān)的簡單問題情感、態(tài)度與價(jià)值觀:教學(xué)過程中,要讓學(xué)生充分體驗(yàn)到歸納推理不僅可以猜想到一般性的結(jié)果,而且可以啟發(fā)我們發(fā)現(xiàn)一般性問題的解決方法。二項(xiàng)式定理是指(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3…等等展開式的一般形式,在初等數(shù)學(xué)中它各章節(jié)的聯(lián)系似乎不太多,而在高等數(shù)學(xué)中它是許多重要公式的共同基礎(chǔ),根據(jù)二項(xiàng)式定理的展開,才求得y=xn的導(dǎo)數(shù)公式y(tǒng)′=nxn-1,同時(shí)=e≈…也正是由二項(xiàng)式定理的展開規(guī)律所確定,而e在高等數(shù)學(xué)中的地位更是舉足輕重,概率中的正態(tài)分布,復(fù)變函數(shù)中的歐拉公式eiθ=cosθ+isinθ,=lnx的導(dǎo)數(shù)公式y(tǒng)=與積分公式=dxlnx+=xn的各階導(dǎo)數(shù)為基礎(chǔ)建立的泰勒公式;f(x)=f(x0)+(x-x0)2+…(x-x0)n+(θ∈(0,1))以及由此建立的冪級(jí)數(shù)理論,更是廣泛深入到高等數(shù)學(xué)的各個(gè)分支中. 怎樣使二項(xiàng)式定理的教學(xué)生動(dòng)有趣正因?yàn)槎?xiàng)式定理在初等數(shù)學(xué)中與其他內(nèi)容聯(lián)系較少,所以教材上教法就顯得呆板,單調(diào),課本上先給出一個(gè)(a+b),再用數(shù)學(xué)歸納法證明,因?yàn)樽C明寫得很長,上課時(shí)的板書幾乎占了整個(gè)黑板,所以課必然上得累贅,記也感到吃力,又怎能發(fā)揮主體作用?怎樣才能使得在這節(jié)課上學(xué)生獲得主動(dòng)?采用課前預(yù)習(xí);自學(xué)輔導(dǎo);還是學(xué)生討論,或讀,議、講,練,或目標(biāo)教學(xué),還是設(shè)置發(fā)現(xiàn)情境?看來這些辦法遇到真正困難時(shí)都會(huì)無能為力,因?yàn)檫@些方法都無法改變算式的冗長,證法的呆板,課堂上的新情境與學(xué)生的認(rèn)知結(jié)構(gòu)中的圖式不協(xié)調(diào)的事實(shí).而MM教育方式即數(shù)學(xué)方法論的教育方式卻能根據(jù)習(xí)題理論注意到充分利用數(shù)學(xué)方法與數(shù)學(xué)技術(shù)把所要證明或計(jì)算的形式變換得十分簡潔,心理學(xué)家皮亞杰一再強(qiáng)調(diào)“認(rèn)識(shí)起因于主各體之間的相互作用”[1]只有客體的形式與學(xué)生主體認(rèn)知結(jié)構(gòu)中的圖式取得某種一致的時(shí)候,才能完成認(rèn)識(shí)的主動(dòng)建構(gòu),也就是學(xué)生獲得真正的理解.MM教育方式遵循“興趣與能力的同步發(fā)展規(guī)律”和“教,學(xué),研互相促進(jìn)的規(guī)律”[2]在教學(xué)中追求簡易,重視直觀,并巧妙地在應(yīng)用抽象使問題變得十分有趣,學(xué)生學(xué)得生動(dòng)主動(dòng),充分發(fā)揮其課堂上的主體作用.1.3.2“楊輝三角”與二項(xiàng)式系數(shù)的性質(zhì)教學(xué)目標(biāo):知識(shí)與技能:掌握二項(xiàng)式系數(shù)的四個(gè)性
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1