freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

蠟印廢水處理工藝技術開題報告-預覽頁

2025-02-14 17:05 上一頁面

下一頁面
 

【正文】 理中得到了較為廣泛的應用。強化生物鐵活性污泥法,通過采取向曝氣池中投加氫氧化鐵,延長難降解物質(zhì)的停留時間等措施,能大幅提高曝氣池的活性污泥濃度和抗沖擊負荷能力,降低污泥負荷,使單位數(shù)量菌團承擔的有機物降解量減少,使菌膠團表面的有機物得到及時!充分的氧化降解,從而提高系統(tǒng)的脫色率和COD去除率。厭氧生物法不僅可用于處理高濃度有機廢水,也可用于處理中、低濃度有機廢水,對染料中的偶氮基、蒽醌基和三苯甲烷基均可降解,但還不能完全分解一些活性染料的中間體,如致癌的芳香胺等。 通常厭氧段采用USB反應器,好氧段目前大多采用生物接觸氧化法。OH,使染料分子迅速分解而獲得很好的脫色效果。具有不產(chǎn)生二次污染、能耗低、可循環(huán)使用、廢水可直接回用等特點。 線輻照下產(chǎn)生一系列高活性粒子,備占地面積小,作簡便,由于用來產(chǎn)生高能粒子的設備昂貴,術要求高,耗大,量利用率低,真正投入實際應用還有大量的問題需要解決[14]。本課題采用厭氧水解處理,蠟染印染廢水的處理工藝包括以下步驟:①將污水收集至調(diào)節(jié)池;②在調(diào)節(jié)池內(nèi)設置曝氣裝置,調(diào)節(jié)PH值至8~9;③在平流沉淀池前分別投加聚合氯化銨(PAC)和聚丙烯酰胺(PAM);④在厭氧池內(nèi)進行厭氧處理,并外加間歇式內(nèi)循環(huán)回流;⑤在接觸氧化池內(nèi)進行供氧;⑥在沉淀池內(nèi)進行泥水分離;⑦將污泥濃縮池的污泥壓縮采用水壓式隔膜壓濾機過濾,形成泥餅[15]。 day 29 for O2), and in the middle of operation (day 29 and day 185 for O1 and H1, respectively。ACG GGC GGT GTG TAC AAG339。L of template, 1 181。L of 3 M sodium acetate at ?20℃ for 12 h, followed by spinning at 4,000 rpm and 4℃ in a micro centrifuge for 60 min. The DNA pellet was washed with 70% icecold ethanol, dried, and suspended in 9 181。ATTACCGCGGCTGCTGG339。 = ~ and ~ for AluI and MspI restriction enzyme digestion maps, respectively. Samples from the first biological treatment process (O1 and H1) showed higher bacterial diversity than those from the second one (O2 and H2). The dominant peaks changed both in height and peak time among the seed sludge samples and steady running stage samples, especially those of the 185day samples. Such different TRFLP profiles, especially after a long running time, may be the result of frequently changing positions of the PDW, especially different types of toxic dyes and additives used in the production process, which may inhibit some important microorganisms or enhance the growth of some other bacteria.A clearer examination of the TRFLP profiles by NMMDS analysis is shown in Fig. 1. The samples from the same period clustered more closely than those from the same treatment tank, whereas those from the seed sludge were obviously separated far away from the others. These results implied that the microbial munities experienced significant changes in the process of seed sludge adaptation to the PDW environments and were in constant evolution during the whole running period of the system. As described earlier, the color, COD, and position of the PDW frequently changed even within a day, which may be one of the factors responsible for the variation in microbial munity. Previous studies have also shown that the bacterial munity was highly variable in labscale bioreactors [18] and even in pilotscale reactors [7] despite stable operation conditions. The results obtained in the present study are consistent with those reported by using the PCRDGGE method [8]. Furthermore, the findings of this study and our TRFLP analysis on fungi and archaea also support this conclusion (data not shown). Nevertheless, there is also some evidence demonstrating bacterial phylogenetic stability under constant operation conditions [6,7]. Although the microbial munities varied with the system running period and influent fluctuations as described earlier, the COD and color removal efficiencies of the firststage biological treatment process were almost identical during the whole detection period and even increased in the secondstage biological process. It appeared that the newly developed or constantly changing microbial munities had the same or even stronger effects on pollutant degradation. This could probably be due to the functional redundancy among diverse phylogenetic groups, allowing oscillations of their populations with no effects on the functioning of the reactor [19]. Considering that some microbial species were not detectable owing to minor concentrations in the sludge and/or that the PCR process may have been inhibited by some substances in the wastewater, it was speculated that a much higher microbial diversity existed in the seed sludge. Some of these microorganisms may have high PDW treatment efficiencies and may also have been retained in the system。第一階段,好氧池是由α變形菌門(%左右),而在第二階好氧池,β和γ變形,除了α變形菌為優(yōu)勢菌群。細菌是在活性污泥的優(yōu)勢種群,它是假設,占主導地位的微生物系統(tǒng)中的每一個階段發(fā)揮的最重要的作用。只有少數(shù)報告已審查滿量程的工業(yè)廢水處理系統(tǒng),甚至更少了分析PDW處理系統(tǒng)。然而,隨著測序技術的發(fā)展,已經(jīng)注意到,DGGE僅指示在的環(huán)境中微生物種群的一小部分。2。 。廢水的特性列于補充表1。天185為O 2和H 2)。瓊脂糖凝膠電泳測定產(chǎn)量和破碎的粗或純化的DNA(1% w/v瓊脂糖)和UV可視化溴化乙錠(EB)染色后。CAG GCC TAA CAC ATG CAA GTC339。 PCR反應在以下條件下進行的:950℃下5分鐘,隨后的94℃ 30個循環(huán)1分鐘,55176。將消化的DNA與75微升的95%冰冷的乙醇和3M乙酸鈉3微升在20℃12小時沉淀,隨后在微型離心機中以4000轉(zhuǎn)和4℃下旋轉(zhuǎn)60分鐘。(NMMDS)分析的基礎。AGAGTTTGATCCTGGCTCAG339。繼焦磷酸測序,Python腳本寫為:(1)刪除包含一個以上的曖昧堿基序列。提取占主導地位的OTU單板的序列運行BLAST和搜索自動利用互聯(lián)網(wǎng)對“NR”數(shù)據(jù)庫親屬()。結(jié)果與討論。第一級生物處理之后,COD和顏色被減少到174?902毫克/升和30?80稀釋,用25?%和25?%,去除率。凝結(jié)和生物處理的兩個步驟之后,COD和色彩的總平均去除率達到85%,與滿足地方排放標準(50稀釋)的流出物的最終顏色。在TRFLP分布曲線表明多元化和波動所收集的樣本中占主導地位的細菌種群。占主導地位的山峰都在種子污泥樣品穩(wěn)定運行階段樣品間的高度和高峰時間發(fā)生變化,特別是那些185天的樣品。這些結(jié)果暗示,微生物群落在經(jīng)歷種子污泥適應該PDW環(huán)境的過程顯著的變化和在系統(tǒng)的整個運行期間是在不斷演進。此外,本研究的和的結(jié)果提供了對真菌和古細菌也支持這一結(jié)論的TRFLP分析(數(shù)據(jù)未顯示)。這很可能是由于不同的系統(tǒng)發(fā)育群體之間的功能冗余,允許其人民的振蕩與反應堆的運作沒有影響。在適應的給PDW長周期,次要微生物脫色和PDW降解高效可能已被富集的或增強五、指導教師意見 導師簽名:
點擊復制文檔內(nèi)容
黨政相關相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1