【摘要】第一篇:正弦定理和余弦定理教學(xué)設(shè)計(jì)教案 教學(xué)準(zhǔn)備 知識(shí)目標(biāo):理解并掌握正弦定理,能初步運(yùn)用正弦定理解斜三角形; 技能目標(biāo):理解用向量方法推導(dǎo)正弦定理的過程,進(jìn)一步鞏固向量知識(shí),體現(xiàn)向量的工具...
2025-09-24 10:39
【摘要】正弦定理、余弦定理基礎(chǔ)練習(xí) 1.在△ABC中: ?。?)已知、、,求b; ?。?)已知、、,求. 2.在△ABC中(角度精確到1°): (1)已知、c=7、B=60°,求C; (2)已知、b=7、A=50°,求B. 3.在△ABC中(結(jié)果保留兩個(gè)有效數(shù)字): (1)已知a=5、b=7、C=120°,求
2025-06-25 03:15
【摘要】【成才之路】2021年春高中數(shù)學(xué)第2章解三角形1正弦定理與余弦定理第2課時(shí)余弦定理同步練習(xí)北師大版必修5一、選擇題1.(2021·煙臺(tái)高二檢測)在△ABC中,角A,B,C所對的邊分別為a,b,c,且a2=b2-c2+2ac,則角B的大小是()A.45°
2024-12-05 06:40
【摘要】第一篇:例談?wù)叶ɡ?、余弦定理的?yīng)用 龍?jiān)雌诳W(wǎng)://. 例談?wù)叶ɡ?、余弦定理的?yīng)用 作者:姜如軍 來源:《理科考試研究·高中》2013年第08期 答:km/h,實(shí)際行駛方向與水流方向約成...
2025-09-24 18:48
【摘要】正弦定理與余弦定理的綜合應(yīng)用 (本課時(shí)對應(yīng)學(xué)生用書第 頁) 自主學(xué)習(xí) 回歸教材 1.(必修5P16練習(xí)1改編)在△ABC中,若sinA∶sinB∶sinC=7∶8∶13,則cosC...
2024-11-17 22:01
【摘要】第一篇:§正弦定理、余弦定理的應(yīng)用(教案) 響水二中高三數(shù)學(xué)(理)一輪復(fù)習(xí)教案第五編平面向量、解三角形主備人張靈芝總第25期 §正弦定理、余弦定理的應(yīng)用 基礎(chǔ)自測 ,在A處測得同一半平面方向的...
2025-09-24 13:37
【摘要】余弦定理(一)知識(shí)梳理余弦定理:(1)形式一:,,形式二:,,,(角到邊的轉(zhuǎn)換)(2)解決以下兩類問題:1)、已知三邊,求三個(gè)角;(唯一解)2)、已知兩邊和它們的夾角,求第三邊和其他兩個(gè)角;(唯一解)題型一根據(jù)三角形的三邊關(guān)系求角例1.已知△ABC中,sinA∶sinB∶sinC=(+1)∶(-1)∶,求最大角.解:∵===k∴sinA∶sinB
2025-06-08 00:36
【摘要】正弦定理和余弦定理練習(xí)題(新課標(biāo))1、選擇題1.在△ABC中,角A、B、C的對邊分別是a、b、c,A=,a=,b=1,則c等于()A.1B.2C.D.
2025-03-25 04:59
【摘要】 課時(shí)作業(yè)24 正弦定理和余弦定理 [基礎(chǔ)達(dá)標(biāo)] 一、選擇題 1.[2021·河北省級示范性高中聯(lián)合體聯(lián)考]△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若3sinA=2sinC,b=5...
2025-04-03 02:47
【摘要】習(xí)題課正弦定理和余弦定理的應(yīng)用雙基達(dá)標(biāo)限時(shí)20分鐘1.在△ABC中,已知cosAcosBsinAsinB,則△ABC是().A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形解析cosAcosBsinAsinB?cos(A+B)0,∴A+B9
2024-11-27 23:51
【摘要】第一篇:高中數(shù)學(xué)《余弦定理》教案1蘇教版必修5 第1課時(shí) 知識(shí)網(wǎng)絡(luò) 三角形中的向量關(guān)系→余弦定理學(xué)習(xí)要求 1.掌握余弦定理及其證明;2.體會(huì)向量的工具性; 3.能初步運(yùn)用余弦定理解斜三角形....
2024-10-26 01:32
【摘要】第一篇:高中數(shù)學(xué)《余弦定理》教案2蘇教版必修5 第2課時(shí)余弦定理 【學(xué)習(xí)導(dǎo)航】 知識(shí)網(wǎng)絡(luò) 余弦定理ì航運(yùn)問題中的應(yīng)用 í ?判斷三角形的形狀 學(xué)習(xí)要求 1.能把一些簡單的實(shí)際問題轉(zhuǎn)化為...
2024-10-28 16:14
【摘要】§ 正弦定理、余弦定理應(yīng)用舉例在三角形的6個(gè)元素中要已知三個(gè)(除三角外)才能求解,常見類型及其解法如表所示.已知條件應(yīng)用定理一般解法一邊和兩角(如a,B,C)正弦定理由A+B+C=180°,求角A;由正弦定理求出b與c.在有解時(shí)只有一解兩邊和夾角(如a,b,C)余弦定理正弦定理由余弦定理求第三邊c
2025-06-28 04:30
【摘要】正弦定理和余弦定理的應(yīng)用舉例考點(diǎn)梳理1.用正弦定理和余弦定理解三角形的常見題型測量距離問題、高度問題、角度問題、計(jì)算面積問題、航海問題、物理問題等.2.實(shí)際問題中的常用角(1)仰角和俯角與目標(biāo)線在同一鉛垂平面內(nèi)的水平視線和目標(biāo)視線的夾角,目標(biāo)視線在水平視線上方的角叫仰角,目標(biāo)視線在水平視線下方的角叫俯角(如圖①).(2)方向角:相對于某正方向的水平角,
2025-06-24 02:22
【摘要】§.余弦定理(1)一、問題提出?在三角形中,已知兩角及一邊,或已知兩邊及其中一邊的對角,可以利用正弦定理求其他的邊和角,那么,已知兩邊及其夾角,怎么求出此角的對邊呢?已知三邊,又怎么求出它的三個(gè)角呢?二、分析理解22222cos2cos2))((cAbcbABAABA
2024-11-17 23:32