freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

福州中考數(shù)學(xué)備考之二次函數(shù)壓軸突破訓(xùn)練∶培優(yōu)篇-預(yù)覽頁

2025-04-02 05:17 上一頁面

下一頁面
 

【正文】 m.即:﹣m2+3m=.解得 m1=1,m2=3.∴K1(1,﹣),K2(3,﹣).點評:本題是二次函數(shù)的綜合題型,其中涉及到的知識點有待定系數(shù)法求二次函數(shù)解析式和三角形的面積求法.在求有關(guān)動點問題時要注意該點的運動范圍,即自變量的取值范圍.4.如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內(nèi)的一個動點,且點P的橫坐標為t.(1)求拋物線的表達式;(2)設(shè)拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.①求S關(guān)于t的函數(shù)表達式;②求P點到直線BC的距離的最大值,并求出此時點P的坐標.【答案】(1)y=﹣x2+2x+3.(2)當(dāng)t=2時,點M的坐標為(1,6);當(dāng)t≠2時,不存在,理由見解析;(3)y=﹣x+3;P點到直線BC的距離的最大值為,此時點P的坐標為(,).【解析】【分析】(1)由點A、B的坐標,利用待定系數(shù)法即可求出拋物線的表達式;(2)連接PC,交拋物線對稱軸l于點E,由點A、B的坐標可得出對稱軸l為直線x=1,分t=2和t≠2兩種情況考慮:當(dāng)t=2時,由拋物線的對稱性可得出此時存在點M,使得四邊形CDPM是平行四邊形,再根據(jù)點C的坐標利用平行四邊形的性質(zhì)可求出點P、M的坐標;當(dāng)t≠2時,不存在,利用平行四邊形對角線互相平分結(jié)合CE≠PE可得出此時不存在符合題意的點M;(3)①過點P作PF∥y軸,交BC于點F,由點B、C的坐標利用待定系數(shù)法可求出直線BC的解析式,根據(jù)點P的坐標可得出點F的坐標,進而可得出PF的長度,再由三角形的面積公式即可求出S關(guān)于t的函數(shù)表達式;②利用二次函數(shù)的性質(zhì)找出S的最大值,利用勾股定理可求出線段BC的長度,利用面積法可求出P點到直線BC的距離的最大值,再找出此時點P的坐標即可得出結(jié)論.【詳解】(1)將A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,得,解得:,∴拋物線的表達式為y=﹣x2+2x+3;(2)在圖1中,連接PC,交拋物線對稱軸l于點E,∵拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,∴拋物線的對稱軸為直線x=1,當(dāng)t=2時,點C、P關(guān)于直線l對稱,此時存在點M,使得四邊形CDPM是平行四邊形,∵拋物線的表達式為y=﹣x2+2x+3,∴點C的坐標為(0,3),點P的坐標為(2,3),∴點M的坐標為(1,6);當(dāng)t≠2時,不存在,理由如下:若四邊形CDPM是平行四邊形,則CE=PE,∵點C的橫坐標為0,點E的橫坐標為0,∴點P的橫坐標t=12﹣0=2,又∵t≠2,∴不存在;(3)①在圖2中,過點P作PF∥y軸,交BC于點F.設(shè)直線BC的解析式為y=mx+n(m≠0),將B(3,0)、C(0,3)代入y=mx+n,得,解得:,∴直線BC的解析式為y=﹣x+3,∵點P的坐標為(t,﹣t2+2t+3),∴點F的坐標為(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=PF?OB=﹣t2+t=﹣(t﹣)2+;②∵﹣<0,∴當(dāng)t=時,S取最大值,最大值為.∵點B的坐標為(3,0),點C的坐標為(0,3),∴線段BC=,∴P點到直線BC的距離的最大值為,此時點P的坐標為(,).【點睛】本題考查了待定系數(shù)法求一次(二次)函數(shù)解析式、平行四邊形的判定與性質(zhì)、三角形的面積、一次(二次)函數(shù)圖象上點的坐標特征以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)由點的坐標,利用待定系數(shù)法求出拋物線表達式;(2)分t=2和t≠2兩種情況考慮;(3)①利用三角形的面積公式找出S關(guān)于t的函數(shù)表達式;②利用二次函數(shù)的性質(zhì)結(jié)合面積法求出P點到直線BC的距離的最大值.5.如圖,已知點A(0,2),B(2,2),C(1,2),拋物線F:y=x22mx+m22與直線x=2交于點P.(1)當(dāng)拋物線F經(jīng)過點C時,求它的解析式;(2)設(shè)點P的縱坐標為yP,求yP的最小值,此時拋物線F上有兩點(x1,y1),(x2,y2),且x1<x2≤2,比較y1與y2的大小.【答案】(1) ;(2).【解析】【分析】(1)根據(jù)拋物線F:y=x22mx+m22過點C(1,2),可以求得拋物線F的表達式;(2)根據(jù)題意,可以求得yP的最小值和此時拋物線的表達式,從而可以比較y1與y2的大小.【詳解】(1) ∵拋物線F經(jīng)過點C(-1,-2),∴. ∴m1=m2=1. ∴拋物線F的解析式是. (2)當(dāng)x=2時,=. ∴當(dāng)m=2時,的最小值為-2. 此時拋物線F的表達式是. ∴當(dāng)時,y隨x的增大而減小.  ∵≤-2,∴.【點睛】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標特征、待定系數(shù)法求二次函數(shù)解析式,解題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答問題.6.如圖1,在矩形ABCD中,DB=6,AD=3,在Rt△PEF中,∠PEF=90176。4,即點C坐標為:(4,0)或(﹣4,0);②當(dāng)AB=BC時,則:(5﹣m)2+92=132,解得:m=5,即:點C坐標為(5,0)或(5﹣2,0);③當(dāng)AC=BC時,則:5﹣m)2+92=(m)2+(﹣3)2,解得:m=,則點C坐標為(,0).綜上所述:存在,點C的坐標為:(177。EF=3,PF=6∴sin∠P= ∴∠P=30176。得到PD=PQ=4,設(shè)P(m,m2+6m5),則D(m,m5),討論:當(dāng)P點在直線BC上方時,PD=m2+6m5(m5)=4;當(dāng)P點在直線BC下方時,PD=m5(m2+6m5),然后分別解方程即可得到P點的橫坐標;②作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于M1,交AC于E,如圖2,利用等腰三角形的性質(zhì)和三角形外角性質(zhì)得到∠AM1B=2∠ACB,再確定N(3,2),AC的解析式為y=5x5,E點坐標為(,),利用兩直線垂直的問題可設(shè)直線EM1的解析式為y=x+b,把E(,)代入求出b得到直線EM1的解析式為y=x,則解方程組得M1點的坐標;作直線BC上作點M1關(guān)于N點的對稱點M2,如圖2,利用對稱性得到∠AM2C=∠AM1B=2∠ACB,設(shè)M2(x,x5),根據(jù)中點坐標公式得到3=,然后求出x即可得到M2的坐標,從而得到滿足條件的點M的坐標.詳解:(1)當(dāng)x=0時,y=x﹣5=﹣5,則C(0,﹣5),當(dāng)y=0時,x﹣5=0,解得x=5,則B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴拋物線解析式為y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,則A(1,0),∵B(5,0),C(0,﹣5),∴△OCB為等腰直角三角形,∴∠OBC=∠OCB=45176。1,∴P(1,1)或(-1, -3).②當(dāng)拋物線為y=-x2-2x 時.∵△AOB為等腰直角三角形,且△BPQ∽△OAB,∴△BPQ為等腰直角三角形,設(shè)P(a,-a2-2a),∴Q((a,0),則|-a2-2a|=|2+a|,即.∵a+2≠0,∴,∴a=177?!唷螿AR=∠GAP,在△QAR和△GAP中,∵AQ=AG,∠QAR=∠GAP,AR=AP,∴△QAR≌△GAP,∴QR=PG.②如圖3中,∵PA+PB+PC=QR+PR+PC=QC,∴當(dāng)Q、R、P、C共線時,PA+PG+PC最小,作QN⊥OA于N,AM⊥QC于M,PK⊥OA于K.∵∠GAO=60176?!帱cQ坐標(﹣6,),在RT△QCN中,QN=,CN=7,∠QNC=9017
點擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1