【摘要】江蘇省建陵高級(jí)中學(xué)2020-2020學(xué)年高中數(shù)學(xué)拋物線的標(biāo)準(zhǔn)導(dǎo)學(xué)案(無(wú)答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】線的標(biāo)準(zhǔn)方程;拋物線的標(biāo)準(zhǔn)方程【課前預(yù)習(xí)】1.拋物線的標(biāo)準(zhǔn)方程(1)定義:點(diǎn)的軌跡叫做拋物線.叫做拋物線的
2024-11-19 19:53
【摘要】立體幾何中的向量方法(1)____之證明【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.掌握直線的方向向量及平面的法向量的概念;2.掌握利用直線的方向向量及平面的法向量解決平行、垂直、夾角等立體幾何問(wèn)題.【重點(diǎn)】掌握直線
2024-11-18 16:52
【摘要】拋物線的幾何性質(zhì)2復(fù)習(xí):1拋物線的幾何性質(zhì)圖形方程焦點(diǎn)準(zhǔn)線范圍頂點(diǎn)對(duì)稱軸elFyxOlFyxOlFyxOlFyxOy2=2px(p0)y2=-2px(p0)x2=2py
2024-11-18 08:56
【摘要】空間向量及其運(yùn)算【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.理解空間向量的概念,掌握其表示方法;2.會(huì)用圖形說(shuō)明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;3.能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問(wèn)題.【重點(diǎn)】能用空間向量的運(yùn)算意義及運(yùn)算律解決
【摘要】空間向量的數(shù)量積【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.掌握空間向量夾角和模的概念及表示方法;2.掌握兩個(gè)向量的數(shù)量積的計(jì)算方法,并能利用兩個(gè)向量的數(shù)量積解決立體幾何中的一些簡(jiǎn)單問(wèn)題.3.掌握空間向量的正交分解及空間向量基本定理和坐標(biāo)表示;4.掌握空
2024-11-28 00:10
【摘要】【學(xué)習(xí)目標(biāo)】理解軌跡的定義,并能根據(jù)所給的條件,選擇恰當(dāng)?shù)闹苯亲鴺?biāo)系求曲線的軌跡方程,畫出方程所表示的曲線新疆學(xué)案王新敞【自主學(xué)習(xí)】我們已經(jīng)建立了曲線的方程、方程的曲線的概念。利用此概念就可以借助于坐標(biāo)系,用坐標(biāo)表示點(diǎn),把曲線看成滿足某種條件的點(diǎn)的集合或軌跡,用曲線上點(diǎn)的坐標(biāo)(,)xy所滿足的方程(,)0fxy?表示曲線,
2024-12-05 06:41
【摘要】曲線與方程(2)【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.求曲線的方程的方法:待定系數(shù)法,直接法,代入法。2.通過(guò)曲線的方程,研究曲線的性質(zhì).【重點(diǎn)】求曲線的方程【難點(diǎn)】通過(guò)曲線的方程,研究曲線的性質(zhì)一、自主學(xué)習(xí)P36~P37,找出
2024-11-28 00:11
【摘要】,第二章圓錐曲線與方程,2.4拋物線2.4.2拋物線的簡(jiǎn)單幾何性質(zhì),第一頁(yè),編輯于星期六:點(diǎn)三十二分。,第二頁(yè),編輯于星期六:點(diǎn)三十二分。,自,主,預(yù),習(xí),探,新,知,第三頁(yè),編輯于星期六:點(diǎn)三十二分...
2024-10-22 18:46
【摘要】拋物線的幾何性質(zhì)(二)一、基礎(chǔ)過(guò)關(guān)1.已知拋物線y2=2px(p0),過(guò)其焦點(diǎn)且斜率為1的直線交拋物線于A、B兩點(diǎn),若線段AB的中點(diǎn)的縱坐標(biāo)為2,則該拋物線的準(zhǔn)線方程為()A.x=1B.x=-1C.x=2D.x=-22.已知拋物線y2=2px(p0
2024-11-19 10:30
【摘要】拋物線的幾何性質(zhì)(一)一、基礎(chǔ)過(guò)關(guān)1.設(shè)點(diǎn)A為拋物線y2=4x上一點(diǎn),點(diǎn)B(1,0),且|AB|=1,則A的橫坐標(biāo)的值為()A.-2B.0C.-2或0D.-2或22.以x軸為對(duì)稱軸的拋物線的通徑(過(guò)焦點(diǎn)且與x軸垂直的弦)長(zhǎng)為8,若拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),則其方程為
【摘要】拋物線和簡(jiǎn)單幾何性質(zhì)一、教學(xué)目標(biāo)(一)知識(shí)教學(xué)點(diǎn)使學(xué)生理解并掌握拋物線的幾何性質(zhì),并能從拋物線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)這些性質(zhì).(二)能力訓(xùn)練點(diǎn)從拋物線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)拋物線的性質(zhì),從而培養(yǎng)學(xué)生分析、歸納、推理等能力.(三)學(xué)科滲透點(diǎn)使學(xué)生進(jìn)一步掌握利用方程研究曲線性質(zhì)的基本方法,加深對(duì)直角坐標(biāo)系中曲線方程的關(guān)系概念
2024-11-19 19:28
【摘要】§雙曲線及其標(biāo)準(zhǔn)方程【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.從具體情境中抽象出雙曲線的模型2.理解雙曲線的定義;3.掌握雙曲線的標(biāo)準(zhǔn)方程.【重點(diǎn)】理解雙曲線的定義【難點(diǎn)】掌握雙曲線的標(biāo)準(zhǔn)方程一、自主學(xué)習(xí)(一)復(fù)
2024-11-28 23:00
【摘要】立體幾何中的向量方法(1)____之求角【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐。【學(xué)習(xí)目標(biāo)】1.掌握利用向量運(yùn)算解幾何題的方法,并能解簡(jiǎn)單的立體幾何問(wèn)題;2.掌握向量運(yùn)算在幾何中求兩點(diǎn)間距離和求空間圖形中的角度的計(jì)算方法.【重點(diǎn)】
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第2章《圓錐曲線與方程》拋物線的簡(jiǎn)單幾何性質(zhì)的應(yīng)用1導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):、頂點(diǎn)坐標(biāo)和離心率并展開(kāi)應(yīng)用.了解""p的意義,會(huì)求簡(jiǎn)單的拋物線方程.、橢圓的類比,體會(huì)探究的樂(lè)趣,激發(fā)學(xué)生的學(xué)習(xí)熱情.重點(diǎn):拋物線的簡(jiǎn)單幾何性質(zhì)難點(diǎn):正確地根據(jù)方程討論曲線的幾
2024-11-19 17:31
【摘要】1.(2021·高考陜西卷)設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=-2,則拋物線的方程是()A.y2=-8xB.y2=-4xC.y2=8xD.y2=4x解析:選x=-2,可知拋物線為焦點(diǎn)在x軸正半軸上的標(biāo)準(zhǔn)方程,同時(shí)得p=4,所以標(biāo)準(zhǔn)方程為y2=2px=