【摘要】銳角三角函數的計算【學習目標】讓學生熟識計算器一些功能鍵的使用【學習重點】運用計算器處理三角函數中的值或角的問題【學習難點】知道值求角的處理【導學過程】11頁12頁例13.求下列各式的值.(1)sin30°·cos45°+cos60
2024-11-19 07:17
【摘要】數學練習題1、在直角三角形中,各邊都擴大2倍,則銳角A的正弦值與余弦值都()A、縮小2倍B、擴大2倍C、不變D、不能確定12、在Rt△ABC中,∠C=900,BC=4,sinA=,則AC=()A、3B、4C、5D、63、若∠
2025-04-16 23:44
【摘要】第二十八章銳角三角函數銳角三角函數第1課時正弦要點感知如圖,在Rt△ABC中,∠C=90°,我們把銳角A的邊與邊的比叫做∠A的正弦,記作,即sinA=.預習練習1-1把△ABC三邊的長度都擴大為原來的3倍,則銳角A的正弦函數值()
2024-11-28 18:04
【摘要】銳角三角函數測試一、選擇題1.RtABC△中,90C??,abc,,分別ABC???,,的對邊,下列關系中錯誤的是()A.cosbcB?B.tanbaB?C.sinbcB?D.tanabA?2.如果A?是銳角,且4tan3A?,那么()A.0
2024-12-02 23:33
【摘要】有關三角函數的計算(2)◆基礎訓練1.若∠A,∠B均為銳角,且sinA=12,cosB=12,則()A.∠A=∠B=60°B.∠A=∠B=30°C.∠A=60°,∠B=30°D.∠A=3
2024-11-28 10:17
【摘要】第二十八章銳角三角函數銳角三角函數第3課時銳角三角函數值數學九年級下冊配人教版課前預習A.sin30°=_____;cos30°=____;tan30°=_____;sin45°=_____;cos45°=_____;tan45
2025-06-15 12:03
【摘要】銳角的三角函數值一、填空題1.A為銳角,53)90sin(??A?,cosA,tanA。2.在△ABC中,∠C=90o,ba是角的正切,ca是角的余弦,cb是角的正弦。3.sin246
2024-11-15 00:39
【摘要】測量與計算一、夯實基礎1.如圖,已知“人字梯”的5個踩檔把梯子等分成6份,從上往下的第二個踩檔與第三個踩檔的正中間處有一條60cm長的綁繩EF,tanα=5/2,則“人字梯”的頂端離地面的高度AD是()A.144cmB.180cmD.360cm2.如圖,山頂一鐵塔AB在陽光下的
2024-11-15 15:41
【摘要】謝謝觀看Thankyouforwatching!
2025-06-18 03:36
【摘要】銳角三角函數教學目標:。:sinA=斜邊的對邊A?,cosA=斜邊的鄰邊A?,tanA=AA??的對邊的鄰邊。重點和難點重點:三角函數定義的理解。難點:直角三角形中銳角三角函數值與三邊之間的關系及求三角函數值。【教學過程】一、情境導入如圖是兩個自動扶梯,甲、乙兩人分別
2024-11-27 22:41
【摘要】(第一課時)說課稿各位評委,老師們,你們好!我是密云縣新農村中學初三數學教師葛長娟。新農村中學是密云縣城鄉(xiāng)結合處的一所普通中學。有機會參加這次教研活動向六個遠郊區(qū)縣各位數學教師學習,我深感榮幸。這次我說課的內容是:初中數學課本第十七冊第二十一章解直角三角形,第一部分銳角三角形函數的第一節(jié)銳角三角函數的起始課,這部分內容在課本第89頁至95頁。下
2024-11-18 22:24
【摘要】 第4課時用計算器求銳角三角函數值及銳角 28.1銳角三角函數 第4課時用計算器求銳角三角函數值及銳角 1.初步掌握用計算器求三角函數值的方法;...
2025-04-03 04:37
2025-06-16 18:10
【摘要】第3課時特殊角的三角函數值學前溫故新課早知在Rt△ABC中,∠C=90°,我們把∠A的對邊與斜邊的比叫做∠A的,記作sinA,即==;把∠A的鄰邊與斜邊的比叫做∠A的,記作cosA,即cosA==;把∠A的對邊與鄰邊的比叫做
2025-06-17 20:12
【摘要】生活中的梯子你會比較兩個梯子哪個更陡嗎?你有哪些辦法?實例1:如圖,梯子AB和EF哪個更陡?你是怎樣判斷的?3m4m實例2:如圖,梯子AB和EF哪個更陡?你是怎樣判斷的?梯子的鉛直高度與其水平距離的比相同時,梯子就一樣陡.比值大的梯子陡.你能設法驗證這個結論嗎?
2024-12-31 23:32