【摘要】青青衣衣BP神經(jīng)網(wǎng)絡(luò)在模式識別中的應(yīng)用青青衣衣BP神經(jīng)網(wǎng)絡(luò)在數(shù)字識別中的應(yīng)用?數(shù)字字符識別技術(shù)在大規(guī)模數(shù)據(jù)統(tǒng)計,郵件分揀,汽車牌照、支票、財務(wù)、稅務(wù)、金融等有關(guān)數(shù)字編號的識別方面得到廣泛應(yīng)用,因此成為多年來研究的一個熱點(diǎn)。?BP神經(jīng)網(wǎng)絡(luò)具有良好的容錯能力、強(qiáng)大的分類能力、自適應(yīng)和自學(xué)習(xí)等特點(diǎn),備受人們的重視,在字符識別領(lǐng)域得到了廣泛的應(yīng)用。
2025-02-08 21:15
【摘要】智能控制論文BP神經(jīng)網(wǎng)絡(luò)的簡要介紹學(xué)院:電氣工程學(xué)院專業(yè)班級:xxx姓名:xxx學(xué)號:xxx
2025-01-08 08:32
【摘要】基于BP神經(jīng)網(wǎng)絡(luò)的自校正PID控制研究摘要:基于反向傳播BP算法的神經(jīng)網(wǎng)絡(luò)具有很強(qiáng)的學(xué)習(xí)能力,適應(yīng)能力.本文詳細(xì)敘述了BP算法的原理,并將改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)應(yīng)用在傳統(tǒng)的PID控制中,克服了PID控制在參數(shù)的調(diào)整過程中對于系統(tǒng)模型過分依賴的缺點(diǎn).利用MATLAB仿真的結(jié)果表明基于BP神經(jīng)網(wǎng)絡(luò)的自校正控制能夠使傳
2024-11-05 23:02
【摘要】基于BP神經(jīng)網(wǎng)絡(luò)的PID控制器設(shè)計中文摘要經(jīng)典PID控制算法作為一般工業(yè)過程控制方法應(yīng)用范圍相當(dāng)廣泛,原則上講它并不依賴于被控對象的具體數(shù)學(xué)模型,但算法參數(shù)的整定卻是一件很困難的工作,更為重要的是即使參數(shù)整定完成,由于參數(shù)不具有自適應(yīng)能力,因環(huán)境的變化,PID控制對系統(tǒng)偏差的響應(yīng)變差,參數(shù)需重新整定。針對上述問題,人們一直采用模糊、神經(jīng)網(wǎng)絡(luò)等各種調(diào)整PID參數(shù)的自適應(yīng)方法,力圖克服這一難
2025-06-20 12:28
【摘要】智能控制導(dǎo)論實(shí)驗(yàn)報告智能控制導(dǎo)論實(shí)驗(yàn)報告2012-01-09姓名:常青學(xué)號:0815321002班級:08自動化指導(dǎo)老師:方慧娟實(shí)驗(yàn)一:模糊控制器設(shè)計與實(shí)現(xiàn)一、實(shí)驗(yàn)?zāi)康?、結(jié)構(gòu)以
2025-06-19 03:19
【摘要】本科生畢業(yè)設(shè)計(論文)題目:姓名:學(xué)號:
2025-07-02 09:08
【摘要】引言PID控制是最早發(fā)展起來的控制策略之一,由于其算法簡單、魯棒性好和可靠性高,被廣泛應(yīng)用于工業(yè)控制過程,尤其適用于可建立精確數(shù)學(xué)模型的確定性控制系統(tǒng)。而實(shí)際工業(yè)生產(chǎn)過程中往往具有非線性,時變不確定性,因而難以建立精確的數(shù)學(xué)模型,應(yīng)用常規(guī)PID控制器不能達(dá)到到理想的控制效果,在實(shí)際生產(chǎn)過程中,由于受到參數(shù)整定方法繁雜的困擾,常規(guī)PID控制器參數(shù)往往整定不良,性能欠佳,對運(yùn)行工況的
2024-08-08 00:18
【摘要】基于BP神經(jīng)網(wǎng)絡(luò)的函數(shù)擬合算法研究[摘要]人工神經(jīng)網(wǎng)絡(luò)(ArtificialNeuralNetwork,ANN)是智能領(lǐng)域的研究熱點(diǎn),目前已經(jīng)成功地應(yīng)用到信號處理、模式識別、機(jī)器控制、專家系統(tǒng)等領(lǐng)域中。在神經(jīng)網(wǎng)絡(luò)技術(shù)中,BP神經(jīng)網(wǎng)絡(luò)因具有結(jié)構(gòu)、學(xué)習(xí)算法簡單等特點(diǎn),近年來得到廣泛的關(guān)注,相關(guān)技術(shù)已經(jīng)在預(yù)測、分類等領(lǐng)域中實(shí)現(xiàn)產(chǎn)業(yè)化。本文針對經(jīng)典的函數(shù)擬合問題,以BP神經(jīng)網(wǎng)絡(luò)為工具,力求
2025-06-24 15:39
【摘要】MATLAB神經(jīng)網(wǎng)絡(luò)工具箱介紹及實(shí)驗(yàn)要求神經(jīng)元模型NeuronModel:多輸入,單輸出,帶偏置?輸入:R維列向量1[,]TRpp?p?權(quán)值:R維行向量111[,]Rww?wb閾值:標(biāo)量?求和單元11Riiinpwb?????傳遞函數(shù)f?輸出(
2025-05-25 22:54
【摘要】ConvolutionalNeuralNetworks卷積神經(jīng)網(wǎng)絡(luò)楊皓軒主要內(nèi)容1.卷積神經(jīng)網(wǎng)絡(luò)—誕生背景與歷程2.卷積神經(jīng)網(wǎng)絡(luò)應(yīng)用—LeNet-5手寫數(shù)字識別3.深度學(xué)習(xí)—Hinton做了些什么4.深度學(xué)習(xí)在數(shù)字圖像識別上的運(yùn)用—Hinton如何在2022年ImageN
2024-08-25 00:28
【摘要】神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)的概念泛指生物神經(jīng)網(wǎng)絡(luò)與人工神經(jīng)網(wǎng)絡(luò)?生物神經(jīng)網(wǎng)絡(luò)由中樞神經(jīng)系統(tǒng)(腦和脊髓)及周圍神經(jīng)系統(tǒng)(感覺、運(yùn)動、交感等)所構(gòu)成的錯綜復(fù)雜的神經(jīng)網(wǎng)絡(luò),最重要的是腦神經(jīng)系統(tǒng)。?人工神經(jīng)網(wǎng)絡(luò)(ANN)由大量簡單的處理單元廣泛地互相連接而形成地復(fù)雜網(wǎng)絡(luò)系統(tǒng),以簡化,抽象,和模擬人腦神經(jīng)網(wǎng)絡(luò)。概述概述
2025-01-04 15:18
【摘要】NeuroSolutions類神經(jīng)網(wǎng)路模擬介紹決策分析研究室何謂類神經(jīng)網(wǎng)路類神經(jīng)網(wǎng)路的靈感源自於腦神經(jīng)學(xué),其基本概念是希望透過模擬人腦結(jié)構(gòu)的方式來建立新一代的電腦處理模式。(中山大學(xué)機(jī)電系嚴(yán)成文教授)運(yùn)用電腦(軟、硬體)來模擬生物大腦神經(jīng)的人工智慧系統(tǒng),並將此應(yīng)用於辨識、決策、控制、預(yù)測,???等等。(真理大學(xué)
2025-05-25 22:58
【摘要】人工神經(jīng)網(wǎng)絡(luò)ArtificialNeuralNetwork機(jī)自1003人工神經(jīng)網(wǎng)絡(luò)的基本概念:定義:人工神經(jīng)網(wǎng)絡(luò)是由具有適應(yīng)性的簡單單元組成的廣泛并行互連的網(wǎng)絡(luò),它的組織能夠模擬生物神經(jīng)系統(tǒng)對真實(shí)世界物體所作出的交互反應(yīng)。它的
2025-07-24 21:58
【摘要】1神經(jīng)網(wǎng)絡(luò)PID控制圖一神經(jīng)網(wǎng)絡(luò)PID控制系統(tǒng)結(jié)構(gòu)圖一、方案一2)()(1kekx?)1()()()(2?????kekekekx)2()1(2)()()(23???????kekekekekx)()()(kykrke????控制的結(jié)構(gòu)。具有增量加權(quán)和。由此可見,為輸入信號的為權(quán)系數(shù),式中的輸出
2024-08-16 11:15
【摘要】模糊神經(jīng)網(wǎng)絡(luò)法及其在缺陷模式識別中的應(yīng)用21:5821:58(1)在制造過程中,冷軋帶鋼表面出現(xiàn)邊緣鋸齒、焊縫、夾雜、抬頭紋、輥印、氧化皮、空洞、刮傷等不同類型的缺陷,直接影響最終產(chǎn)品的質(zhì)量和性能。(2)缺陷圖像的模式識別是冷軋帶鋼表面缺陷檢測的關(guān)鍵。(3)在現(xiàn)場惡劣環(huán)境下,圖像噪聲較大,圖像亮度差異較大,圖像紋理變化復(fù)雜,規(guī)律性