【正文】
較低(),且其房間內(nèi)不設吊頂,因此較大尺寸的管道不易布置。根據(jù)以上分析,本設計采用風機盤管加新風系統(tǒng),其優(yōu)點如下:;,容易滿足層高及凈高的要求;,對每個房間進行適當?shù)墓?jié)能控制。采用這種排風方式的衛(wèi)生間,通風效果好且能滿足防火要求。在i-d圖上,過N點畫出ε=44166的過程線,取送風溫差=6℃,則送風溫度to=25-6=19℃。其他房間風量計算同201房間,算得結(jié)果及風機盤管選型見附表2。新風經(jīng)過新風機組處理后由風道送至風機盤管后部,同室內(nèi)回風混合后經(jīng)風機盤管送出,改善室內(nèi)衛(wèi)生條件。組合式空調(diào)機組是將各種空氣處理設備(加熱、冷卻、加濕、凈化、消聲和隔振)和風機、閥門等組合成一個整體的箱型設備。將各系統(tǒng)依次命名,一層為X1系統(tǒng),二、三層為X2系統(tǒng),四、五層為X3系統(tǒng),六、七層為X4系統(tǒng),八、九層為X5系統(tǒng)。擴散型風口具有較大的又到室內(nèi)空氣的作用,送風溫度衰減快,但射程較短;軸向型風口誘導室內(nèi)氣流的作用小,空氣溫度、速度的衰減慢,射程遠;孔板送風口是在平板上布滿小孔的送風口,速度分布均勻,衰減快。/s,送風溫度=19℃。/s4計算送風口數(shù)量 個 取2個從而實際的風口送風速度:m/s5校核送風速度: 射流服務區(qū)斷面積 ㎡ 射流自由度,則 m/s因<,可以達到回流平均風速≤。以一層大堂為例。圖4—1大堂散流器布置方式 2初選散流器,按=3m/s作用選取風口,選用頸部尺寸為200的圓形散流器,㎡,則頸部風速為: m/s散流器的實際出口面積約為頸部面積的90%,即==㎡。本章是對氣流組織送風口進行設計選取,使處理好的空氣更好的進入到室內(nèi)并在室內(nèi)有更好的分布。校核計算采用簡單近似算法進行校核,經(jīng)過校核均滿足要求。 風系統(tǒng)管道的設計方法一個好的空氣管道系統(tǒng)設計應該達到令人滿意的系統(tǒng)平衡(改變管道尺寸或使用不同的部件),較低的噪聲水平和適當?shù)膲毫p失。1根據(jù)空氣處理裝置及各送風點所在位置設計送風管道的走向及連接管,同時確定回風管的走向和聯(lián)結(jié)部件。在確定斷面時應盡量選用通風管道的統(tǒng)一規(guī)格,以利用合理的用料和制作。5對與最不利管路并聯(lián)的管路作阻力平衡計算。在選擇風機時,一般要考慮10%的余量,以補償可能存在的漏風和阻力計算不精確。但空調(diào)系統(tǒng)的水力計算有其自身的特點:(1) 系統(tǒng)內(nèi)的介質(zhì)為空氣而非采暖系統(tǒng)中的熱水或蒸汽,因此管道的斷面遠遠大于熱水或蒸汽管道的斷面,因而占用空間較大。空氣流過斷面變化、流向變化和流量變化的局部管件,由于渦流的存在而產(chǎn)生局部性能量損失,稱為局部阻力。1. 根據(jù)表5-1選擇各管段內(nèi)推薦風速,主風道為4m/s,支風道為3m/s。4. 計算系統(tǒng)總阻力。則摩擦阻力l==局部阻力部分/s,與其對應的動壓ρv/2=/2=,查表得,則風口局部阻力Z=3=同理,查附錄N得: 連接風口的漸擴管,; 矩形彎頭R/b=,a/b=,; 多頁風量調(diào)節(jié)閥全開時,; 分叉三通, ; =則局部阻力為:++(++)/2=表53各管段的阻力計算管段號 沿程阻力(Pa)局部阻力(Pa)總計1110 10998 8776 65 54 43 32029029021 首先對各管段進行編號,并確定最不利環(huán)路為MLKGFEDCBA,如圖所示:根據(jù)各管段的風量和選定的流速,確定各管段的斷面尺寸。用同樣方法求得頂層和首層的最不利環(huán)路,在此不具體說明,詳見附表4。進行水力計算確定各管段的斷面尺寸和系統(tǒng)阻力,保證系統(tǒng)內(nèi)的風量分配達到要求,最終確定系統(tǒng)通風機的型號和動力消耗。而水系統(tǒng)管網(wǎng)就是將制冷站的冷源按照不同的供水管路,源源不斷的分別輸送給各個部位或不同用途的空調(diào)房間的末端裝置,實現(xiàn)夏季供冷的空調(diào)作用后,再將其由末端裝置分別通過回水管路回收至制冷站,以使再次制出空調(diào)所需冷水。如管路豎井面積允許時,盡量采用管路同程式。冷水機組和相應水泵的運行臺數(shù),可根據(jù)供水溫度、壓力、或積算負荷側(cè)的冷量(即同時測量供回水溫度和流量)來控制。如支管管路較長而使管路轉(zhuǎn)彎較多時,或某些水管路為躲避消防管、新風管和裝設在吊頂中的較大斷面電纜等而由上下轉(zhuǎn)彎時,均應在轉(zhuǎn)彎的最高點設置自動排氣閥,防止水中帶氣。在水系統(tǒng)運行其間過濾器要定期清洗,以保證水路暢通無阻。 冷凍水系統(tǒng)水力計算過程水系統(tǒng)計算步驟如下:1布置制冷機房,確定冷凍水走向及水路附件。 沿程阻力和局部阻力1. 流量計算 kg/s (6—1)式中 W——水流量,kg/s;Q——設備所需提供的冷量,kW;tg——供水溫度,℃;th——回水溫度,℃;cp——水定壓比熱,kJ/(kg表62水流速表部位流速(m/s)部位流速(m/s)水泵壓出口~向上立管1~3水泵吸入口~一般管道~排水管~冷卻水1~主干管~ 由式6-2算出實際管徑后,可按【1】表10-2選取與算出的實際管徑相近的標準管徑,之后可算出實際流速。 計算舉例整個水系統(tǒng)分為兩個環(huán)路系統(tǒng),環(huán)路1為風機盤管系統(tǒng),環(huán)路2為新風機組系統(tǒng)。由同樣方法可算出各立管管徑及實際流速分別為:立管L1公稱直徑為DN25,;立管LL3同立管L1,立管L4公稱直徑為DN40,;立管L5公稱直徑為DN32,;立管L6公稱直徑為DN32,;立管L7公稱直徑為DN32,;立管L8公稱直徑為DN40。每臺流量47 m3/h,揚程44m,效率66%,轉(zhuǎn)速2900r/min,配KL型聯(lián)接板,加隔振器安裝,滿足要求。在進行計算時需注意單位換算,以免出錯。在本次設計中,設計從收集原始資料到冷負荷計算;從多方面收集資料確定空調(diào)方案,對酒店的空調(diào)方案進行了選擇和確定,對風管系統(tǒng)進行了布置和水力計算,并對新風處理設備進行了選擇和校核,還進行了排風設計;對空調(diào)系統(tǒng)冷源進行了設計和設備選擇,并進行了冷凍水系統(tǒng)水力計算。首先我要感謝我的指導老師王芳教授對我耐心指導和悉心關懷。感謝四年來教育過我的老師們。感謝我的同學們。 Variable air volume system 1. Introduction The main reason for using heating, ventilation and airconditioning (HVAC) systems is to satisfy users when it es to health, indoor air quality (IAQ) and thermal fort. A variable air volume (VAV) system satisfies the health criterion and IAQ by supplying a minimum amount of air flow based on national regulations and standards. When there is a cooling need, the thermal fort is satisfied by increasing the air flow and supplying enough air colder than the room temperature. When the heat load increases in a zone controlled by a VAV system, the flow increases. A room controller controls the air flow to the room by measuring the room air temperature and the supply air flow. The supply air flow depends on the load and temperature difference between the zone and the supply air. A low temperature of the supply air requires a lower air flow than a high supply air temperature does. The supply air temperature is controlled in the HVAC unit.2. Method This chapter firstly describes the theory for calculating the power requirement of the different parts of the HVAC unit and the zone in Fig. 1. In this first part, the building is considered as one zone with one temperature set point and one air flow. Then, theory is divided into four different operating cases depending on outdoor conditions and what parts of the HVAC unit that areoperating (using energy). The supply air temperature is optimized in each case regarding power requirement. After that, a multi zone approach is presented. Finally, climate data used in the energy calculations and other control strategiesfor the supply air temperature. are presented. . Assumptions and limitations . It is assumed that there is no thermal storage nor in the zone or in the walls surrounding the the outdoor temperature changes, this results in an overestimation in changes in cooling or heating need in the zone. This will not affect the equations for optimization but in reality with thermal storage, the absolute energy use would be different. The internal walls are supposed to have infinite insulation. Otherwise, there would be heat exchange between the zones. The equations will still be valid though the energy exchange can be treated as a change in internal load. The same argument is valid for a heavy weight building with thermal storage when for example night cooling is being used. Steady state conditions are assumed. . In the energy use calculations, there have been no limits for the maximum air flow. If an upper limit were used, this would result in a difference in zone fort depending on. the control strategy. In addition, it would not be possible to pare the control strategies but the power use would decrease. . The infiltration is assumed to be zero. If infiltration were included, this would affect the cooling or heating need in the zone. Therefore, the calculated annual energy use for the described control strategies would be affected in the same direction. . The ducts are assumed to be tight. If there were air leaking from the ducts, this result in a higher SFPvalue than the value given by the