【摘要】12除做到:排列組合分清,加乘原理辯明,避免重復(fù)遺漏外,還應(yīng)注意積累排列組合問題得以快速準(zhǔn)確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個數(shù)字組成無重復(fù)的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(1)數(shù)字1不排在個位和千位(2)數(shù)字1不在個位,數(shù)字6不在千位。分析:(1)個位和千位有5個數(shù)字可供選擇,其余2位有四個可供選擇,由乘法原理:=240
2025-03-25 02:36
【摘要】排列組合排列定義???從n個不同的元素中,取r個不重復(fù)的元素,按次序排列,稱為從n個中取r個的無重排列。排列的全體組成的集合用P(n,r)表示。排列的個數(shù)用P(n,r)表示。當(dāng)r=n時稱為全排列。一般不說可重即無重。可重排列的相應(yīng)記號為P(n,r),P(n,r)。組合定義從n個不同元素中取r個不重復(fù)的元素組成一個子集,而不考慮其元素的順序,稱
2025-06-25 23:09
【摘要】完美WORD格式專題三:排列、組合及二項式定理一、排列、組合與二項式定理【基礎(chǔ)知識】(加法原理).(乘法原理).==.(n,m∈N*,且m≤n).===(n,m∈N*,且m≤n).:(1)=;(2)+=(3).:.:
2025-06-25 22:56
【摘要】主題課題:兩個原理和排列知識內(nèi)容:1、分類計數(shù)原理和分步計數(shù)原理2、排列、排列數(shù)概念3、排列數(shù)的計算公式4.排列應(yīng)用題能力目標(biāo):1、通過兩個原理的學(xué)習(xí),培養(yǎng)學(xué)生的解決實際問題的能力;2、通過排列的學(xué)習(xí),可以遷移知識,更好的運用兩個原理,并能解決稍復(fù)雜的數(shù)學(xué)問題。3、培養(yǎng)學(xué)生的分析問題能力、解決問題的能力。數(shù)學(xué)思想:轉(zhuǎn)化思想
2025-04-17 01:31
【摘要】排列組合常見題型及解題策略排列組合問題是高考的必考題,它聯(lián)系實際生動有趣,但題型多樣,思路靈活,不易掌握,實踐證明,掌握題型和解題方法,識別模式,熟練運用,是解決排列組合應(yīng)用題的有效途徑;下面就談一談排列組合應(yīng)用題的解題策略.一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利
2025-08-05 18:14
【摘要】排列組合測試卷1.7個人站一隊,其中甲在排頭,乙不在排尾,則不同的排列方法有()A.720 B.600 C.576 D.3242.某學(xué)校推薦甲、乙、丙、丁4名同學(xué)參加A、B、C三所大學(xué)的自主招生考試。每名同學(xué)只推薦一所大學(xué),()3.6個人分乘兩輛不
2025-08-05 07:38
【摘要】第一篇:排列組合典型例題 典型例題一 例1用0到9這10個數(shù)字.可組成多少個沒有重復(fù)數(shù)字的四位偶數(shù)? 分析:這一問題的限制條件是:①沒有重復(fù)數(shù)字;②數(shù)字“0”不能排在千位數(shù)上;③個位數(shù)字只能是0...
2024-10-21 11:00
【摘要】排列組合教材分析四色問題?任意一張地圖,用一種顏色對一個地區(qū)著色,那么一共只需要四種顏色就能保證每兩個相鄰的地區(qū)顏色不同。穩(wěn)定的婚姻問題?如果一個村子里每一個女孩都恰好認(rèn)識k個男孩,并且每一個男孩也恰好認(rèn)識k個女孩,那么每一個女孩都可以嫁給她認(rèn)識的一個男孩,并且每一個男孩都可以娶一個他認(rèn)識的女孩.穩(wěn)定的婚姻問題?但是
2025-08-15 22:11
【摘要】排列組合方法一解決排列組合問題的幾種思想1.主元思想某單位安排7位工作人員在10月1日至10月7日值班,每人值班1天,其中甲乙2人都不安排在10月1日和10月7日,則不同安排方法有多少種?解析先排甲乙,有5×4=20種再排其他5人,有5×4×3×2×1=120種共120
2025-08-18 16:59
【摘要】高中數(shù)學(xué)排列組合易錯題分析排列組合問題類型繁多、方法豐富、富于變化,稍不注意,,以饗讀者.1沒有理解兩個基本原理出錯排列組合問題基于兩個基本計數(shù)原理,即加法原理和乘法原理,故理解“分類用加、分步用乘”是解決排列組合問題的前提.例1(1995年上海高考題)從6臺原裝計算機和5臺組裝計算機中任意選取5臺,其中至少有原裝與組裝計算機各兩臺,則不同的取法有種.誤解:因為可
【摘要】解決排列組合中涂色問題的常見方法及策略與涂色問題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學(xué)思想。解決涂色問題方法技巧性強且靈活多變,故這類問題的利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問題與觀察問題的能力,有利于開發(fā)學(xué)生的智力。本文擬總結(jié)涂色問題的常見類型及求解方法。一、區(qū)域涂色問題1、根據(jù)分步計數(shù)原理,對各個區(qū)域分步涂色,這是處理染色問題的基本方法。例1、用5種不同的顏色給圖中標(biāo)①
2025-07-26 07:24
【摘要】排列組合與概率原理內(nèi)容分析:排列組合與概率的兩個基本原理是排列、組合的開頭課,學(xué)習(xí)它所需的先行知識跟學(xué)生已熟知的數(shù)學(xué)知識聯(lián)系很少,排列、組合的計算公式都是以乘法原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開兩個基本原理,所以在教學(xué)目標(biāo)中特別提出要使學(xué)生學(xué)會準(zhǔn)確地應(yīng)用兩個基本原理分析和解決一些簡單的問題對于學(xué)生陌生的知識,在開頭課中首先作一個大概的介紹,使學(xué)生有一個
2025-06-17 05:28
【摘要】;能運用解題策略解決簡單的綜合應(yīng)用題。提高學(xué)生解決問題分析問題的能力合問題.教學(xué)目標(biāo)計數(shù)原理。完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法,…,在第n類辦法中有mn種不同的方法,那么完成這件事共有:種不同的方法.
2024-10-19 05:23
【摘要】排列組合問題經(jīng)典題型與通用方法:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當(dāng)作一個大元素參與排列.,如果必須相鄰且在的右邊,則不同的排法有()A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問題,可先把無位置要求的幾個元素全排列,再把規(guī)定的相離的幾個元素插入上述幾個元素的空位和兩端.,如果甲乙兩個必須不相鄰,那么不同的排法種
2025-03-25 02:37
【摘要】高考數(shù)學(xué)中涂色問題的常見解法及策略與涂色問題有關(guān)的試題新穎有趣,近年已經(jīng)在高考題中出現(xiàn),其中包含著豐富的數(shù)學(xué)思想。解決涂色問題方法技巧性強且靈活多變,因而這類問題有利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問題與觀察問題的能力,有利于開發(fā)學(xué)生的智力。本文擬總結(jié)涂色問題的常見類型及求解方法1、根據(jù)分步計數(shù)原理,對各個區(qū)域分步涂色,這是處理染色問題的基本方法。例1。用5種不同的顏色給圖中