【正文】
凝土重力壩基礎(chǔ)上的縫張開(kāi)度,裂紋擴(kuò)展,和孔隙壓力的發(fā)展。比較了數(shù)值模擬和實(shí)際行為在實(shí)地的監(jiān)測(cè)結(jié)果。一個(gè)對(duì)巖石聯(lián)合流體力學(xué)行為的更詳細(xì)的描述中可以在阿爾瓦雷斯( 1997 年)和阿爾瓦雷斯( 1995 年)和在實(shí)驗(yàn)室調(diào)查和數(shù)值模擬模型進(jìn)行了烏鴉和 Gale( 1985), Gentier( 1987 年),江崎等人( 1992),和其他人中發(fā)現(xiàn)。雙曲線的定義是由初始切線剛度定義, niK ,并聯(lián) 合最大的漸近結(jié)束, mcV 。 ( 1995 年): 這里 niK 的單位是 M pa/? m, mcV 的單位是 ? m 粗糙關(guān)節(jié)展覽最大規(guī)模的聯(lián)合最高和最低的封閉初始關(guān)節(jié)僵硬,關(guān)節(jié)光滑而有最低 mcV 和最大的 niK 巖石的共同特點(diǎn)是液壓行為之間的線性關(guān)系液壓孔徑, ha ,它控制流動(dòng)規(guī)模,關(guān)閉和機(jī)械聯(lián)合, nV? ,用于水平應(yīng)力。 w? 是水的單位重量 。直 流地下 G=W/L(其中 W和 L是寬度和長(zhǎng)度,分別聯(lián)合),為不同徑向流, G =2π/ln(re/ir ),其中 ir 和 re 分別為內(nèi)外圓柱面半徑。 [5]載于圖 2。 在深露天礦在巴西花崗巖開(kāi)采項(xiàng)目獲得的場(chǎng)滲透率測(cè)量 在圖 2 中繪制與理論的關(guān)系比較。 典型液壓孔徑 400 500μ m的和后關(guān)節(jié)僵硬 = NIK 10V 的雙曲線關(guān)系,與三菱商事和 mcV = hoa 似乎同意這些結(jié)晶巖體觀測(cè)場(chǎng)行為良好。(b)hydraulic. This paper presents behavior representative of cycles of reservoir operation in the last 20 years collected from monitored data of Albigna Dam, Switzerland, and also describes the results of a series of numerical analyses carried out to assess the hydromechanical behavior of its foundations. Comparisons are made between results of numerical modeling and the actual behavior monitored in the field. Based on these parisons, a series of conclusions are drawn regarding basic porepressure buildup mechanisms in jointed rock masses with implications that may be considered in other engineering projects, where the hydromechanical behavior of jointed rock should be considered. Such projects include pressure tunnels, hazardous waste disposal, and other situations dependent on geologic containment controlled by flow behavior along rock discontinuities. Hydromechanical behavior of natural joints A brief summary of the stateoftheart of mechanical and hydraulic behavior of individual rock joints is presented here. A more detailed description of rock joint Hydromechanical behavior can be found in Alvarez(1997)and Alvarez et al.(1995)and in investigations in laboratory and numerical model simulations carried out by Raven and Gale (1985), Gentier (1987),Esaki et al.(1992),and others. The mechanical behavior of the joint can be represented by a nonlinear hyperbolic relationship between the applied effective normal stress, 39。 μ is the dynamic viscosity of the water( 310? Pa and for divergent radial flow, G=2π/ln (re/ ir ), where ir and re are the borehole and external cylindrical surface radiuses, respectively. Jointed rock mass permeability change with depth Alternatively, the rock mass equivalent permeability, km, can be expressed in the same form as the modified cubic law, or in terms of hydraulic aperture, to account for spacing of the joints, S: Changes in jointed rock mass permeability due to