【正文】
不安全的。 Kd越大時(shí),越容易超調(diào),但是不同擾動(dòng)區(qū)域的信號(hào)噪音的瞬態(tài)響應(yīng)可能導(dǎo)致系統(tǒng)的不穩(wěn)定。過大的比例增益會(huì)導(dǎo)致系統(tǒng)的不穩(wěn)定乃至崩潰。 微分值計(jì)算如下: Dout:微分輸出值 Kd:微分時(shí)間常數(shù),協(xié)調(diào)參數(shù) e:偏差 =SPPV t:時(shí)間或瞬時(shí)時(shí)間(當(dāng)前的) 微分作用減緩了控制器輸出的變化率,這種效果最接近于控制器的給定值。然而,因?yàn)榉e分從過去的積累誤差作出反應(yīng),引起當(dāng)前的值越過設(shè)定值(跨過設(shè)定值向其它方向改變)。 積分值的大小與偏差的大小及持續(xù)時(shí)間成正比。如果比例增益太高,系統(tǒng)將變得不穩(wěn)定。 比例度是根據(jù)當(dāng)前的錯(cuò)誤值而做出的變動(dòng)。 注釋:這部分描述 PID 控制器理想平行或非相互作用的形式。 理論上,控制器能用來控制可測(cè)量對(duì)象,以及可以影響偏差的輸出、輸入標(biāo)準(zhǔn)值的所有過程參數(shù)。為有效的控制系統(tǒng)選擇正確的參數(shù)被稱為整定控制器。當(dāng)偏差小時(shí)而做了一個(gè)大變動(dòng),相當(dāng)于一個(gè)大的調(diào)整控制器,會(huì)導(dǎo)致超調(diào)。作為一個(gè)控制器,在確定溫度給定值后,就可以粗略決定改變閥門位置多少,以及怎樣改變偏差值。 感覺水溫就是對(duì)過程值或變量的測(cè)量。 控制環(huán)基礎(chǔ) 一個(gè)關(guān)于控制環(huán)類似的例子就是保持水在理想溫度,涉及到兩個(gè)過程,冷、熱水的混合。在控制系統(tǒng)中存在 P,PI,PD,PID調(diào)節(jié)器??刂破鞯捻憫?yīng)可以被認(rèn) 為是對(duì)系統(tǒng)偏差的響應(yīng)。 PID 控制器算法涉及到三個(gè)部分:比例,積分,微分。PID控制器通過調(diào)節(jié)給定值與測(cè)量值之間的偏差,給出正確的調(diào)整,從而有規(guī)律地糾正控制過程。根據(jù)具體的工藝要求,通過 PID 控制器的參數(shù)整定,從而提供調(diào)節(jié)作用。這是通過把不想要的控制輸出置零取得。 注釋:由于控制理論和應(yīng)用領(lǐng)域的差異,很多相關(guān)變量的命名約定是常用的。重復(fù)這個(gè)過程,調(diào)節(jié)熱水流直到溫度處于期望的穩(wěn)定值。測(cè)量值與給定值之間的差就是偏差值,太高、太低或正常。微分作用就是根據(jù)水溫變得更熱、更冷,以及變化速率來 決定什么時(shí)候、怎樣調(diào)整那些閥門。人不會(huì)這樣做,因?yàn)槲覀兪怯兄腔鄣目刂迫藛T,可以從歷史經(jīng)驗(yàn)中學(xué)習(xí),但PID控制器沒有學(xué)習(xí)能力,必須正確的設(shè)定。供給水溫的變化就構(gòu)成了對(duì)過程的一個(gè)擾動(dòng)。 由于它們悠久的歷史,簡(jiǎn)易,良好的理論基礎(chǔ)以及簡(jiǎn)單的設(shè)置、維護(hù)要求, PID 控制器被許多應(yīng)用實(shí)踐所采納。因此: Pout, Iout和 Dout是控制器的三個(gè)參數(shù),下面分別予以確定。 e:偏差 =SPPV t:時(shí)間或瞬時(shí)時(shí)間(當(dāng)前的) 一個(gè)高的比例增益產(chǎn)生于一種輸出值的大的變化。盡管有穩(wěn)態(tài)補(bǔ)償,理論和工業(yè)實(shí)踐都表明比例度在輸出控制中起到大部分的作用。對(duì)總的控制作用的積分大小由積分時(shí)間常數(shù)來決定,即Ki,積分值計(jì)算如下: Iout:積分值 Ki:積分時(shí)間常數(shù),協(xié)調(diào)參數(shù) e:偏差 =SPPV ζ:積分時(shí)間 積分值加速面向設(shè)定值的過程運(yùn)動(dòng)并且消除殘余的只與控制器發(fā)生作用的穩(wěn)態(tài)偏差。對(duì)整個(gè)控制行為的微分作用的大小稱為微分值 Kd。 三種參數(shù)控制的輸出值,比例,積分和微分綜合起來能夠計(jì)算出 PID 調(diào)節(jié)器的輸出,計(jì)算控制器輸出時(shí), PID算法的最終形式 u(t)為: 協(xié)調(diào)參數(shù)分別是: Kp:比例增益 — 偏差愈大時(shí), Kp 也愈大,比例期補(bǔ)償更大。 Kd:微分。 最佳控制行為就是過程能根據(jù)應(yīng)用作出相應(yīng)的變化。一些過程有一定的非線性,因此在系統(tǒng)滿負(fù)荷下正常工作的參數(shù)在系統(tǒng)零負(fù)荷下將停止工作。手工協(xié)調(diào)方法相對(duì)來說可能沒有效率。增加 P值直到環(huán)的輸出值擺動(dòng),然后, P值應(yīng)該大約被設(shè)為標(biāo)準(zhǔn)值的四分之 一。不過, I 值太大將引起過度的反應(yīng)并且超調(diào)。 B.尼科 爾斯 發(fā)明。相應(yīng)地, PID協(xié)調(diào)和循環(huán)優(yōu)化軟件被用來保證結(jié)果的確定。在有幾分鐘響應(yīng)時(shí) 間的環(huán)、數(shù)學(xué)環(huán)路調(diào)諧中被推薦,因?yàn)榉磸?fù)試驗(yàn)要花費(fèi)數(shù)天,而僅僅是為了找到一套穩(wěn)定的環(huán)價(jià)值。 PID算法的修改 基于 PID算法給 PID控制應(yīng)用提出了一些挑戰(zhàn)。 限制不可缺少的偏差被計(jì)算的時(shí)間段。機(jī)械的比率主要是一個(gè)設(shè)備變動(dòng)一次的函數(shù)。當(dāng)系統(tǒng)偏差值增加時(shí),比例、微分控制能產(chǎn)生積極的變動(dòng),例如設(shè)定值的變動(dòng)。因此,控制系統(tǒng)不超調(diào)。單獨(dú)的前饋控制經(jīng)常能提供主要控制器輸出值的部分。如果一速度 PID 控制器被用來控制負(fù)荷的速度,并驅(qū)動(dòng)被原動(dòng)力使用的力或者力矩,它有利于賦予負(fù)荷所需的加速度,恰當(dāng)估價(jià)并且給 PID速度環(huán)控制器的輸出添加給定值。 因此,在非線性系統(tǒng) (象 空調(diào)系統(tǒng) 那樣 )內(nèi)的PID 控制器的工 作是易變的。 一個(gè)關(guān)于 微分方面的問題是少量測(cè)量或者過程 噪音 能引起輸出的大量改變。這 相當(dāng)于使用 PID 控制器作為一個(gè) PI控制器。 一個(gè) PID 控制器擔(dān)任外環(huán)控制器,例如易流動(dòng)物體或者速度控制主要物質(zhì)參數(shù)。這些機(jī)械控制器經(jīng)常使用一根 杠桿 , 曲軸 和活塞由壓縮空氣提供能量?,F(xiàn)在,用 microcontrollers或者 FPGAs實(shí)現(xiàn)的數(shù)字控制器已經(jīng)基本上替換電子控制器。 the Proportional, the Integral and Derivative values. The Proportional value determines the reaction to the current error, the Integral determines the reaction based on the sum of recent errors and the Derivative determines the reaction to the rate at which the error has been changing. The weightedsum of these three actions is used to adjust the process via a control element such as the position of a control valve or the power supply of a heating tuning the three constants in the PID controller algorithm the PID can provide control action designed for specific process requirements. The response of the controller can be described in terms of the responsiveness of the controller to an error, the degree to which the controller overshoots the setpoint and the degree of system oscillation. Note that the use of the PID algorithm for control does not guarantee optimal control of the system or system stability. Some applications may require using only one or two modes to provide the appropriate system control. This is achieved by setting the gain of undesired control outputs to zero. A PID controller will be called a PI, PD, P or I controller in the absence of the respective control actions. PI controllers are particularly mon, since derivative action is very sensitive to measurement noise, and the absence of an integral value may prevent the system from reaching its target value due to the control action. Note: Due to the diversity of the field of control theory and application, many naming conventions for the relevant variables are in mon use. loop basics A familiar example of a control loop is the action taken to keep one39。s frequency response to design the PID loop values. In loops with response times of several minutes, mathematical loop tuning is remended, because trial and error can literally take days just to find a stable set of loop values. Optimal values are harder to find. Some digital loop controllers offer a selftuning feature in which very small setpoint changes are sent to the process, allowing the controller itself to calculate optimal tuning values. Other formulas are available to tune the loop according to different performance criteria. 4 Modifications to the PID algorithm The basic PID algorithm presents some challenges in control applications that have been addressed by minor modifications to the PID mon problem resulting from the ideal PID implementations is integral windup. This can be addressed by: Initializing the controller integral to a desired value Disabling the integral function until the PV has entered the controllable region Limiting the time period over which the integral error is calculated Preventing the integral term from accumulating above or below predetermined bounds Many PID loops control a mechanical device (for example, a valve). Mechanical maintenance can be a major cost and wear leads to control degradation in the form of either stiction or a deadband in the mechanical response to an input signal. The rate of mechanical wear is mainly a function of how often a device is activated to make a change. Where wear is a significant concern, the PID loop may have an output deadband to reduce the frequency of activation of the output (valve). This is acplished by modifying the controller to hold its output steady if the change would be small (within the defined deadband range). The calculated output must leave the deadband before the