【正文】
期導(dǎo)通時間最大值選為 。 半橋變換器次級電流有效值和線徑可通過式( )和式( )計算。磁通不平衡在初級置位伏秒數(shù)與復(fù)位伏秒數(shù)不相等時發(fā)生。電流 Ipft流過時,該電容被充電,這部分充電電壓使初級平頂脈沖電壓有所下降,如圖 。初級電流對該電容充電,導(dǎo)致初級電壓下降,下降幅度不應(yīng)該超過 10%( dV為允許的下降量) 設(shè)允許的下降量為 dV,產(chǎn)生該壓降的等效平頂脈沖電流為式( )中的 Ipft,而流通該電流的時間為 ,這樣所需阻斷電容值可簡單地通過下式得到 Cb= ( ) 例如,一個功率為 150w的半橋電路,額定直流輸入電壓為 320V,頻率為 100KHz,假設(shè)有 15%的網(wǎng)壓波動,最小輸入電壓為 272V,則初級電壓應(yīng)為 177。 半 橋變換器的漏感問題 半橋變換器不存在像單端正激和推挽拓?fù)渲心菢勇闊┑穆└屑夥鍐栴},因為開關(guān)管 Q Q2分別并聯(lián)了二極管 D D6,它將開關(guān)管承受的漏感尖峰電壓箝位于 Vdc。這樣,導(dǎo)通時間內(nèi)的漏感儲能就會經(jīng) D D6反饋給電源 Vdc。 同理, Q2導(dǎo)通時,勵磁電感儲存能量 , Np同名端電壓(該端電壓接近Vdc/2)為負(fù); Q2關(guān)斷時,勵磁電感使所有繞組電壓極性反向。 136V。一般希望盡可能使初級脈沖電壓保持為平頂波。 前面章節(jié)還將磁通不平衡原因簡單解釋為初級存在直流分量。 輸出濾波器的設(shè)計 由于對輸出電感電流幅值及輸出紋波電壓的要求與推挽電路一樣,所以輸出電感和電容的選擇可參照式( )和( )進(jìn)行計算。 半橋拓?fù)涑跫夒娏饔行е?Irms=Ipft ,由式( )可得 Irms= ( ) 設(shè)電流密度為 500圓密爾沒有效值安培,則所需的總圓密爾數(shù)為 = ( ) 次級繞組匝數(shù)和線徑的選擇 由式( ) 式( )可以計算出次級繞組匝數(shù)。 ,正激變換器的磁芯工作于磁滯回線的第一、三象限,所以半橋變換器磁通擺幅 dB取峰值磁密期望值的兩倍。此外,電路將采用箝位技術(shù)以保證在不正常工作狀態(tài)下導(dǎo)通時間也不超過。整流后的輸出電壓約為 308336V 和推挽拓?fù)湟粯?,初級交流方波電壓使所有次級感?yīng)全波式方波電壓,因此這種半橋電路的次級電壓、導(dǎo)線規(guī)格、輸出電感和電容的選擇都與推挽式電路相同。 Q1導(dǎo)通 Q2關(guān)斷時, Np同名端(又端點)電壓為 +168V,Q2承受電壓為 336V;同理, Q2導(dǎo)通 Q1關(guān)斷時, Q1承受電壓也為 336V,此時 Np同名端電壓為 168V。首先忽略小容量阻斷電容 Cb,則 Np的下端可近似地看作連接到 C1與 C2的連接點。從圖 ,當(dāng)任何一個晶體管導(dǎo)通時,另一個關(guān)斷的晶體管承受的電壓只是最大直流輸入電壓,而并非其兩倍。當(dāng)輸入 網(wǎng)壓為 220V AC時, S1斷開;為 120V AC時, S1閉合。因此,該拓?fù)湓诰W(wǎng)壓為 220V的歐洲市場設(shè)備中得到廣泛應(yīng)用。當(dāng)輸入網(wǎng)壓為 120V時也有使用橋式拓?fù)涞那闆r。 136V. A tolerable droop in the flattopped primary voltage pulse would be 10% or about 14 V. Then fromEq. for 150Wand Vdc of 272V, Ipft =150/272= A, and from Eq. , Cb = 5 10?6/14 = ?F. The capacitor must be a nonpolarized type. HalfBridge Leakage Inductance Problems Leakage inductance spikes, which are so troublesome in the singleended forward converter and pushpull topology, are easily avoided in the half bridge: they are clamped to Vdc by the clamping diodes D5, D6 across transistors Q1, Q2. Assuming Q1 is “on,” the load and magizing currents flow through it and through the primary leakage inductance of T1, the paralleled T1 magizing inductance, and the secondary load impedances that are reflected by their turn ratios squared into the primary. Then it flows through Cb into the C1, C2 junction. The dot end of Np is positive with respect to its nodot end. When Q1 turns “off,” the magizing inductance forces all winding polarities to reverse. The dot end of T1 starts to go negative by flyback action, and if this were to continue, it would put more than Vdc across Q1 and could damage it. Also, Q2 could be damaged by imposing a reverse voltage across it. However, the dot end of T1 is clamped by diode D6 to the supply rail Vdc and can go no more negative than the negative end of the supply. Similarly, when Q2 is “on,” it stores current in the magizing inductance, and the dot end of Np is negative with respect to the nodot end (which is close to Vdc/2). When Q2 turns “off,” the magizing inductance reverses all winding polarities by flyback action and the dot end of Np tries to go positive but is caught at Vdc by clamp diode D5. Thus the energy stor