【正文】
large, ., within 40 m. The range of the vertical stress is clearly smaller after the working face advances 30 m. According to the relationship of the variation between vertical and horizontal stress, the multiplication of the variation of vertical stress and its corresponding coefficient of horizontal pressure (λ) is equal to the increment of horizontal stress at the point M[1]. Then the increment of horizontal stress and the horizontal stress at the point M continues to be superposed, which is inversed analysis when the working face advances 30 m. The results of the variation in stress show that the vertical stress is larger than the horizontal stress when the working face is at its original position: the maximum principal stress is the vertical stress。這為防治帶壓開采時(shí)煤層底板突水提供了重要的理論依據(jù)。 2 基本原理 假設(shè)半無限平面受有均布載荷,運(yùn)用彈性理論通過疊加原理得到應(yīng)力分布公式 [78]。 為求出 全部分布載荷對 M 點(diǎn)的作用,只需 將所有各個(gè)微小集中力引起的應(yīng)力相 疊加, 亦即求出式 (1)從 ζ= a 到 ζ= b 的積分 。 應(yīng)力計(jì)算過程 根據(jù)彈性力學(xué)中半無限平面邊界上受分布載荷作用的問題,利用式 (2)則可分別計(jì)算出支承壓力 對底板下一點(diǎn) M(x, z) 產(chǎn)生的垂直應(yīng)力 σz(1), σz(2) 和水平應(yīng)力 σx(1), σx(2)。其中變量 代表工作面推進(jìn)位置距坐標(biāo)原點(diǎn)的相對距離。結(jié)果見圖 3 和圖 4。另外,從工作而推進(jìn)距離對垂直應(yīng)力的影響來看,當(dāng)工作而推進(jìn)大約 30m以后垂直應(yīng)力的變化幅度就開始明顯變小了。若再加上垂直應(yīng)力變化量的影響,則水平應(yīng)力遠(yuǎn)大于垂直應(yīng)力,這時(shí)水平應(yīng)力己成為最大主應(yīng)力,垂直應(yīng)力己變?yōu)樽钚≈鲬?yīng)力,這與回采巷道發(fā)生底鼓的部分力學(xué)原因是基本一致的 [1214]。結(jié)合圖 5 和表 1 可以看出,計(jì)算得到的最大主應(yīng)力小于圖 5 中的主應(yīng)力的峰值,計(jì)算的區(qū)域在圖 5 中的彈性變形區(qū),其滲透性相對較弱。由于底板巖石的非均質(zhì)和非連續(xù)性,所以按照理想 狀態(tài)簡化建立的模型與實(shí)際情況會(huì)有一定的差距,但通過分析與計(jì)算在給定工作而相關(guān)參數(shù)的條件卜,仍可以得到工作面推進(jìn)過程中某相對固定煤層 底板下應(yīng)力分布的基本變化規(guī)律。從一個(gè)實(shí)例可以看出,煤層底板泥巖和砂巖處在彈性變形階段,隨著工作面的推進(jìn),相對固定位置處的底板沒有受到很大破壞仍然有一定的防水能力。工作面推進(jìn) 30 m后,在底板 42 m以內(nèi)都是水平應(yīng)力大于垂直應(yīng)力。這和測量報(bào)告結(jié)論完全一致。詳見表 1。則該水平應(yīng)力的增量與相應(yīng)深度處的水平應(yīng)力進(jìn)行累加,可以反演在工作面已經(jīng)推進(jìn) 30 m時(shí)煤層底板應(yīng)力場在相對固定位置處的變化。當(dāng)工作面向前推進(jìn)后,垂直應(yīng)力隨深度的增加在距離坐標(biāo)原點(diǎn) x = 位置的變化均有相似的規(guī)律,即一開始變化幅度較大,當(dāng)達(dá)到一定深度后開始緩慢減小,并且具有眾途同歸的趨勢。 當(dāng) x = ,式 (4) 和 (5) 可進(jìn)一步變?yōu)椋? 實(shí)例分析 根據(jù)兗州礦業(yè)集團(tuán)有限公司楊村煤礦 2702 工作面的地質(zhì)條件和采 礦技術(shù)條件,相關(guān)參數(shù)取值為: =3, =5 m, =50 m, =25 kN/m3 and H=500 m。 )。 其中 OA 段為塑性區(qū),長度設(shè)為 x0, AB 段為彈性區(qū),長度設(shè)為 L0 x0。 為求出半平面體內(nèi)某一點(diǎn)例如 M 點(diǎn)處的應(yīng)力狀態(tài)。隨著煤礦向深部開采,底板應(yīng)力分布規(guī)律的研究對掌握底板巖層變形及破壞特征、預(yù)測底板突水和設(shè)計(jì)底板巷道的合理位置與維護(hù)方法等方而都具有非常重要的實(shí)際意義。該模型對煤層底板隨工作面推進(jìn)相對固定位置剖面處應(yīng)力分布規(guī)律進(jìn)行了求解: 煤層某相對固定位置底板應(yīng)力沿深度變化幅度越來越小,在一定深度范圍內(nèi)垂直應(yīng)力的釋放速度遠(yuǎn)大于水平應(yīng)力的釋放速度, 隨著工作面推進(jìn), 最大主應(yīng)力的方向 由 開始的垂直方向變?yōu)楹髞淼乃椒较?。 the minimum principal stress is horizontal stress. Because the rate of decrease of the vertical stress is faster than the horizontal stress, the horizontal stress is larger than the vertical stress within 42 m when the working face advances 30 m (for details, see Fig. 4). Considering the effect of the variation in vertical stress, the horizontal stress is much larger than the vertical stress. The maximum principal stress is the horizontal stress and the minimum principal stress is the vertical stress. It agrees with the partial reasons of the mechanical principle of floor heave[1214]. Fig. 3 also shows that the variation is almost steady on the section x= when the working face advances 30 m. Therefore, the relationship of variation in stress with depth is calculated when the working face advances from 0 to 30 m. The details are shown in Table 1. Table 1 Data of rock characteristics and correlative stress of the floor on 2702 working face in Yangcun colliery (MPa) 巖層 深度 (m) Δ λ λΔ x=0 m x=30 m x=30 m x=30 m λΔ 泥巖 0 5 砂巖 10 15 21 石灰?guī)r 25 28 From the analysis of the related data, the stresses + λΔ in Table 1 can be regarded as the stress values , obtained from mechanical rock tests. So the variations of the principal stress from theoretical calculations and the results from the servocontrolled tests can be contrasted. Given these contrasts it is seen that, the largest stress value of mudstone is MPa and the largest stress value of sandstone MPa. When bining Fig. 5 with Table