【摘要】8平面解析幾何內(nèi)容概述解析幾何是17世紀(jì)數(shù)學(xué)發(fā)展的重大成果之一,其本質(zhì)是用代數(shù)方法研究圖形的幾何性質(zhì),體現(xiàn)了數(shù)形結(jié)合的重要數(shù)學(xué)思想。與課程改革前相比,中學(xué)解析幾何變化不大,主體內(nèi)容仍然是:直線與方程、圓與方程、圓錐曲線與方程。只是前兩者作為必修模塊,統(tǒng)稱為平面解析幾何初步,第三者則放到選修1-1和選修2-1中。另外,還在平面解析幾何初
2025-08-15 23:35
【摘要】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱為向量.相等向量、負(fù)向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2025-09-25 17:17
【摘要】多元函數(shù)微分學(xué)習(xí)題課一、主要內(nèi)容平面點集和區(qū)域多元函數(shù)概念多元函數(shù)的極限極限運算多元函數(shù)連續(xù)的概念多元連續(xù)函數(shù)的性質(zhì)全微分概念偏導(dǎo)數(shù)概念方向?qū)?shù)全微分的應(yīng)用復(fù)合函數(shù)求導(dǎo)法則全微分形式的不變性高階偏
2025-05-07 12:09
【摘要】答疑題庫——線性代數(shù)與解析幾何(二)例1試證,正交向量組一定是線性無關(guān)的。證,設(shè)s???,,,21?是正交向量組,于是有??????0,,0,???iijiji????設(shè)有數(shù)skkk,,,21?,使02211????sskkk????,兩邊與i?作內(nèi)積得??
2025-08-21 12:55
【摘要】答疑題庫——線性代數(shù)與解析幾何(一)1、計算n階行列式000100002000010?????????nnDn??分析由定義知,n階行列式共有n!項,每一項的一般形式為????nnppppppraaa,212121
【摘要】線性代數(shù)公式大全1、行列式1.行列式共有個元素,展開后有項,可分解為行列式;2.代數(shù)余子式的性質(zhì):①、和的大小無關(guān);②、某行(列)的元素乘以其它行(列)元素的代數(shù)余子式為0;③、某行(列)的元素乘以該行(列)元素的代數(shù)余子式為;3.代數(shù)余子式和余子式的關(guān)系:4.設(shè)行列式:將上、下翻轉(zhuǎn)或左右翻轉(zhuǎn),所得行列式為,則;將順時針或逆時針旋轉(zhuǎn),所得行列式為,
2025-04-04 05:19
【摘要】1圓錐曲線定義的深層及綜合運用一、橢圓定義的深層運用例1.如圖1,P為橢圓上一動點,為其兩焦點,從的外角的平分線作垂線,垂足為M,將F2P的延長線于N,求M的軌跡方程。圖1解析:易知故在中,則點M的軌跡方程為。二、雙曲線定義的深層運用例2.如圖2,為雙曲線的兩焦點
2025-01-08 20:27
【摘要】第40講直線的傾斜角與斜率、直線的方程第41講兩直線的位置關(guān)系第42講圓的方程第43講直線與圓、圓與圓的位置關(guān)系第44講橢圓第45講雙曲線第46講拋物線第47講圓錐曲線的熱點問題第八單元解析幾何
2025-08-07 11:15
【摘要】《高等數(shù)學(xué)》(含線性代數(shù))考試大綱一、考試大綱的性質(zhì)《高等數(shù)學(xué)》是林學(xué)專業(yè)、環(huán)境專業(yè)、生物學(xué)專業(yè)、水土保持與荒漠化防治專業(yè)、林業(yè)經(jīng)濟(jì)管理等專業(yè)的基礎(chǔ)課程,也是報考我校森林經(jīng)理,林木遺傳育種的考試科目之一。為幫助考生明確考試復(fù)習(xí)范圍和有關(guān)要求,特制定本考試大綱。本考試大綱主要根據(jù)北京林業(yè)大學(xué)本科《高等數(shù)學(xué)》(110學(xué)時)教學(xué)大綱編制而成,適用于報考北京林業(yè)大學(xué)碩士學(xué)位
2025-09-25 16:52
【摘要】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時,可用定量的計算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問題。建立空間直角坐標(biāo)系,解立體幾何題1122330???abab
2025-10-31 01:53
【摘要】解析幾何一、選擇題1.已知兩點A(-3,),B(,-1),則直線AB的斜率是( )A. B.-C. D.-解析:斜率k==-,故選D.答案:D2.已知直線l:ax+y-2-a=0在x軸和y軸上的截距相等,則a的值是( )A.1 B.-1C.-2或-1 D.-2或1解析:①當(dāng)a=0時,y=2不合題意.②a≠0,x=0時
2025-08-05 16:26
【摘要】空間向量與立體幾何單元檢測題一、選擇題:1、若,,是空間任意三個向量,,下列關(guān)系式中,不成立的是()A、B、C、D、2、已知向量=(1,1,0),則與共線的單位向量() A、(1,1,0) B、(0,1,0) C、(,,0)D、(1,1,1)3、若為任意
2025-01-15 05:33
【摘要】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時,可用定量的計算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角的問題。數(shù)量積:夾角公式:異面直線所成角的范圍:思考:結(jié)論:題型
2025-11-02 02:54
【摘要】解析幾何直線與圓檢測題及答案一、選擇題:1.已知過、兩點的直線與直線平行,則的值為(?。〢.-10B.22.設(shè)直線的傾角為,則它關(guān)于軸對稱的直線的傾角是(?。?B.C.D.3.已知過兩點的直線與直線垂直,則的值( )
2025-06-18 19:07
【摘要】空間向量之應(yīng)用3利用空間向量求距離課本P42如果表示向量a的有向線段所在直線垂直于平面?,則稱這個向量垂直于平面?,記作a⊥?.如果a⊥?,那么向量a叫做平面?的法向量.?la課本P33已知向量ABa?和軸l,e是l上與l同方向的單位向量.作
2025-01-08 13:41