【摘要】行列式第二章?n階行列式?行列式性質(zhì)與展開定理?克拉默(Cramer)法則?應(yīng)用舉例第一節(jié)n階行列式2022/7/153行列式(Determinant)是線性代數(shù)中的一個最基本、最常用的工具,最早出現(xiàn)于求解線性方程組.它被廣泛地應(yīng)用于數(shù)學(xué)、物理、力學(xué)以及工程技
2025-06-17 06:40
【摘要】2022/8/20第4講矩陣的乘法、轉(zhuǎn)置n階方陣的行列式周忠榮編1?本講內(nèi)容1.矩陣的乘法2.矩陣的轉(zhuǎn)置3.n階方陣的行列式第4講矩陣的乘法、轉(zhuǎn)置n階方陣的行列式2022/8/20第4講矩陣的乘法、轉(zhuǎn)置n階方陣的行列式
2025-08-01 17:44
【摘要】§4行列式按行(列)展開一、余子式與代數(shù)余子式二、行列式按行(列)展開法則(1)在階行列式中,把元素所在的第行和第列劃去后,留下來的階行列式叫做元素的余子式,記作nijaij1?nija.Mij??,記ij
2025-05-14 04:49
【摘要】第行列式的性質(zhì)主要內(nèi)容:一、行列式的性質(zhì)二、行列式的計算三、思考與練習(xí)一、行列式的性質(zhì)行列式稱為行列式的轉(zhuǎn)置行列式。(transposeofdeterminant).TDD記nnaaa?2211???nna
2025-05-14 04:50
【摘要】復(fù)習(xí)變號.?行列式的性質(zhì)(常用)1.行列式兩行(列)互換,行列式的值2.將行列式的某行(列)所有元素都乘以同一個因子后加到另一行(列)的對應(yīng)元素上,行列式的值3.行列式某行(列)有公因子,可以不變.提到行列式符號的外面.??復(fù)習(xí)?行列式展開定理112211
2025-08-05 19:07
【摘要】EXCEL的矩陣運算例:x=(ATA)-1ATb已知資料(結(jié)果)位置選擇『函數(shù)類別』及『函數(shù)名稱』(可利用『說明』來查“MMULT”的詳細(xì)用法),輸入“TRANSPOSE(“因為AT是一反矩陣,必須先用反矩陣功能轉(zhuǎn)換,以選擇矩陣範(fàn)圍(也可以直接輸入)。.A範(fàn)圍
2025-08-05 08:58
【摘要】用消元法解二元線性方程組???????.,22221211212111bxaxabxaxa??1??2??:122a?,2212221212211abxaaxaa????:212a?,1222221212112abxaaxaa??,得兩式相減消去2x一、二階行列式的引入;21222112112
2025-01-15 15:51
【摘要】二階行列式與逆矩陣選修4-2矩陣與變換2022年6月4日星期六復(fù)習(xí):A,如果存在一個二階矩陣B,使得AB=
2025-05-07 06:31
【摘要】山東農(nóng)業(yè)大學(xué)信息學(xué)院上頁下頁目錄2022-2022第二學(xué)期線性代數(shù)任課教師:孔德洲部門:信息學(xué)院辦公室:文理大樓719室E-mail:山東農(nóng)業(yè)大學(xué)信息學(xué)院上頁下頁目錄線性代數(shù)課程是高等學(xué)校理工農(nóng)科各專業(yè)學(xué)生的一門必修的重要基礎(chǔ)理論課,它
2025-05-02 03:11
【摘要】線性代數(shù)教材:鄭寶東主編.線性代數(shù)與空間解析幾何.高等教育出版社,北京,2022參考書:[1]同濟大學(xué)數(shù)學(xué)教研室編.線性代數(shù)(第六版).高等教育出版社.2022年[2]趙連偶,劉曉東.線性代數(shù)與幾何(面向21世紀(jì)課程教材).高等教育出版社[3]居余馬等.線性代數(shù).清華大學(xué)出版社第一章n階行列式
2025-08-05 16:28
【摘要】.......行列式化簡計算技巧和實題操練——Zachary:技巧1:行列式與它的轉(zhuǎn)置行列式的值相等,即D=DT技巧2:互換行列式的任意兩行(列),行列式的值將改變正負(fù)號技巧3:行列式
2025-03-25 07:38
【摘要】上海八中許穎龍春朝2022年12月15日???????2268534yxyx2、用行列式解二元一次方程組解:,0486834????D,9662235???xD4822854??yD???????????12DDyDDxyx方
2025-01-08 00:11
2025-07-21 17:25
【摘要】.......說明:黃色高亮部分是必做題目,其他為選作第一章行列式專業(yè)班姓名學(xué)號第一節(jié)行
【摘要】《線性代數(shù)》下頁結(jié)束返回2021-2021第一學(xué)期線性代數(shù)任課教師:田祥部門:信息學(xué)院辦公室:文理大樓721室E-mail:下頁《線性代數(shù)》下頁結(jié)束返回一、研究對象二、核心方法下頁以討論線性方程組的解為基礎(chǔ),研究線性空間的結(jié)構(gòu)、線性變換的形式
2025-05-10 10:27