【摘要】函數(shù)的單調(diào)性(三)觀察某市一天24小時內(nèi)的氣溫變化圖,全天最高氣溫是在何時?即x∈[0,24],f(x)≤f(14)=9概念:一般地,設(shè)y=f(x)的定義域為A.若存在定值x0∈A,使得對于任意x∈A,有f(x)≤f(x0)恒成立,則稱f(x0)為y=f(
2025-08-15 20:29
【摘要】第一篇:函數(shù)的單調(diào)性反思 函數(shù)的單調(diào)性反思 積分學(xué)、微分方程乃至泛函分析等高等學(xué)校開設(shè)的數(shù)學(xué)基礎(chǔ)課程,無一不是以函數(shù)作為基本函數(shù)的單調(diào)性是函數(shù)眾多性質(zhì)中的重要性質(zhì)之一,函數(shù)的單調(diào)性一節(jié)中的知識是今...
2024-11-04 01:41
【摘要】函數(shù)的單調(diào)性?1.函數(shù)單調(diào)性的判定.?2.函數(shù)單調(diào)性的證明.?3.函數(shù)單調(diào)性的應(yīng)用.?1.利用已知函數(shù)的單調(diào)性?2.利用函數(shù)圖象?3.復(fù)合函數(shù)的判定方法?4.利用定義一.函數(shù)單調(diào)性的判定方法:例f(x)在實數(shù)集上是減函數(shù),求f(2x-x2)的單調(diào)區(qū)間以及單調(diào)性
2024-11-07 00:42
【摘要】[鍵入文字]課題函數(shù)的基本性質(zhì)教學(xué)目標(biāo)理解函數(shù)的單調(diào)性、最大(?。┲导捌鋷缀我饬x;結(jié)合具體函數(shù),了解奇偶性的含義;重點、難點單調(diào)性及奇偶性的應(yīng)用考點及考試要求函數(shù)單調(diào)性、奇偶性的判定及應(yīng)用教學(xué)內(nèi)容一、典型選擇題1.在區(qū)間上為增函數(shù)的是( ?)A.
2025-05-16 01:56
【摘要】復(fù)合函數(shù)單調(diào)性的判斷增↗減↘增↗減↘增↗減↘增↗減↘減↘增↗以上規(guī)律還可總結(jié)為:“同向得增,異向得減”或“同增異減”.1求函數(shù)y=(4x-x2)的單調(diào)區(qū)間.2、求函數(shù)的單調(diào)性及最值(-∞,0)上為增函數(shù)的是A.B.=-(x+1)2
2025-06-25 19:48
【摘要】函數(shù)的單調(diào)性教學(xué)設(shè)計教學(xué)目標(biāo)1.使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.2.通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達能力;通過對函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力.3.通過知識的探究過程培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣。教學(xué)重
2025-04-16 23:39
【摘要】中國教育考試培訓(xùn)第二門戶!課題:函數(shù)的單調(diào)性教材:人教版全日制普通高級中學(xué)教科書(必修)數(shù)學(xué)第一冊(上)授課教師:北京景山學(xué)校許云堯【教學(xué)目標(biāo)】1.使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和定義判斷、證明函數(shù)單調(diào)性的方法.2.通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合的思想方法,培養(yǎng)學(xué)生觀察、歸納
2025-05-16 01:41
【摘要】復(fù)合函數(shù)的概念及復(fù)合函數(shù)的單調(diào)性一、知識點內(nèi)容和要求:理解復(fù)合函數(shù)的概念,會求復(fù)合函數(shù)的單調(diào)區(qū)間二、教學(xué)過程設(shè)計 ?。ㄒ唬?fù)習(xí)函數(shù)的單調(diào)性引例:函數(shù)y=f(x)在上單調(diào)遞減,則函數(shù)(a>0,且a≠1)增減性如何? ?。ǘ┬抡n 1、復(fù)合函數(shù)的概念 如果y是a的函數(shù),a又是x的函數(shù),即y=f(a),a=g(x),那么y關(guān)于x的函數(shù)y=f[g(x)] 叫做
2025-08-22 17:04
【摘要】學(xué)校樂從中學(xué)年級高二學(xué)科數(shù)學(xué)導(dǎo)學(xué)案主備審核授課人授課時間班級姓名小組課題:函數(shù)的單調(diào)性及最值課型:復(fù)習(xí)課課時:一【學(xué)習(xí)目標(biāo)】理解函數(shù)的單調(diào)性、最大(?。┲导捌鋷缀我饬x【學(xué)習(xí)過程】一、知識要點
【摘要】中國領(lǐng)先的中小學(xué)教育品牌精銳教育學(xué)科教師輔導(dǎo)講義講義編號11sh11sx00學(xué)員編號:年級:高二課時數(shù):3學(xué)員姓名:輔導(dǎo)科目:
2025-08-17 04:57
【摘要】函數(shù)的單調(diào)性(一)選擇題[]A.增函數(shù)B.既不是增函數(shù)又不是減函數(shù)C.減函數(shù)D.既是增函數(shù)又是減函數(shù)2.函數(shù)(1),(2),(3),(4)中在上圍增函數(shù)的有[]A.(1)和(2)B.(2)和(3)C.(3)和(4) D.(1)和(4)3.若y=(2k-1)x+b是R上的減函數(shù),則有[
2025-06-16 04:06
【摘要】知識點五:函數(shù)解析式的求法(1)配湊法:由已知條件f(g(x))=F(x),可將F(x)改寫成關(guān)于g(x)的表達式,然后以x替代g(x),便得f(x)的解析式(如例(1));(2)待定系數(shù)法:若已知函數(shù)的類型(如一次函數(shù)、二次函數(shù)),可用待定系數(shù)法(如例(3));(3)換元法:已知復(fù)合函數(shù)f(g(x))的解析式,可用換元法,此時要注意新元的取值范圍(如例(2));(4)方程思
2025-06-16 03:50
【摘要】了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系/能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間/了解函數(shù)在某點取得極值的必要條件和充分條件/會用導(dǎo)數(shù)求函數(shù)的極大值、極小值/會求閉區(qū)間上函數(shù)的最大值、最小值/會利用導(dǎo)數(shù)解決某些實際問題導(dǎo)數(shù)的應(yīng)用1.函數(shù)在某區(qū)間上單調(diào)的充分條件一般地,設(shè)函數(shù)y=f(x)在某個區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個區(qū)間內(nèi)y′
2024-09-29 15:55
【摘要】函數(shù)的單調(diào)性學(xué)習(xí)目標(biāo)了解函數(shù)單調(diào)性的概念掌握判斷一些簡單函數(shù)單調(diào)性的方法教學(xué)方法講解法、練習(xí)法相結(jié)合本節(jié)重點,難點函數(shù)單調(diào)性的定義證明函數(shù)單調(diào)性的方法步驟y=x2從圖象可以看到:圖象在y軸的右側(cè)部分是上升的,也就是說,當(dāng)x在區(qū)間[0,+)上取值時,隨著x的增大
2025-08-04 14:16
【摘要】淺談作文訓(xùn)練書面表達一直是學(xué)習(xí)語文的重要組成部分。它要求學(xué)生有扎實的語言基本功,具備一定的審題能力、想象能力、表達能力等。老師只有在平時教學(xué)中有意識地系統(tǒng)訓(xùn)練學(xué)生的寫作能力,學(xué)生才能在激烈的競爭中信心十足,游刃有余。一、循序漸進“冰凍三尺,非一日之寒”。寫作能力并非是一蹴而就的。它必須由淺入深、由簡到繁、由易到難、循序漸進、一環(huán)緊扣一
2024-11-23 12:37