【摘要】上一頁下一頁返回首頁湘潭大學(xué)數(shù)學(xué)與計算科學(xué)學(xué)院1第4章微分方程與差分方程上一頁下一頁返回首頁湘潭大學(xué)數(shù)學(xué)與計算科學(xué)學(xué)院2在科學(xué)技術(shù)和經(jīng)濟管理等許多實際問題中,系統(tǒng)中的變量間往往可以表示成一個(組)微分方程或差分方程,它們是兩類不同的方程,前者處理的量的離散變量,間隔時間周期作為統(tǒng)計的.動態(tài)
2025-05-14 06:04
【摘要】第八章微分方程與差分方程簡介微分方程的基本概念可分離變量的一階微分方程一階線性微分方程可降階的高階微分方程二階常系數(shù)線性微分方程微分方程應(yīng)用實例退出第八章微分方程與差分方程簡介我們知道,函數(shù)是研究客觀事物運動規(guī)律的重要工具,找出函數(shù)關(guān)
2024-11-03 21:15
【摘要】Runge-Kutta積分方法所以得到:是精確的,中的平均速度。設(shè)是動點在其中為:,一般的解法可以表示對?????????????????????)(!3)(2)()()()(),(),().,(),(32111nnnnnnnnnnnnnnntYhtYhtYhtYhtYtYYttY
2025-05-05 18:22
【摘要】§常系數(shù)線性微分方程的解法-對于一般的線性微分方程沒有普遍的解法基本點v常系數(shù)線性微分方程及可化為這一類型的方程的解法-只須解一個代數(shù)方程。v某些特殊的非齊次微分方程也可通過代數(shù)運算和微分運算求得它的通解。掌握:v特征方程與特征根,及求常系數(shù)線性方程的通解v待定系數(shù)法與拉普拉斯變換法求非齊次線性方程的特解
2025-04-29 01:03
【摘要】二、二階線性方程的特征理論三、三類方程的比較一、二階線性方程的分類第四章二階線性偏微分方程的分類與總結(jié)第四章四、先驗估計一、二階線性方程的分類111222122xxxyyyxyauauaububucuf??????1、兩個自變量的方程一
2025-02-21 15:22
【摘要】二階線性微分方程)()()(22xfyxQdxdyxPdxyd???時,當(dāng)0)(?xf二階線性齊次微分方程時,當(dāng)0)(?xf二階線性非齊次微分方程n階線性微分方程).()()()(1)1(1)(xfyxPyxPyxPynnnn?????????第六節(jié)線性微分方程解的結(jié)構(gòu)])[(11?
2025-01-19 08:36
【摘要】第五節(jié)可降階的高階微分方程)()(xfyn?解法:??2)2(dCxyn??????xd??依次通過n次積分,可得含n個任意常數(shù)的通解.21CxC??型的微分方程一、例1.解:??12dcose
2025-04-21 03:56
【摘要】微分方程建模Ⅱ動態(tài)模型正規(guī)戰(zhàn)與游擊戰(zhàn)?早在第一次世界大戰(zhàn)期間就提出了幾個預(yù)測戰(zhàn)爭結(jié)局的數(shù)學(xué)模型,其中有描述傳統(tǒng)的正規(guī)戰(zhàn)爭的,也有考慮游擊戰(zhàn)爭的,以及雙方分別使用正規(guī)部隊和游擊部隊的所謂混合戰(zhàn)爭的。后來人們對這些模型作了改進用以分析歷史上一些著名的戰(zhàn)爭,如二戰(zhàn)中的硫磺島之戰(zhàn)和越南戰(zhàn)爭。預(yù)測戰(zhàn)爭勝負(fù)應(yīng)該考慮哪些因素?;
2025-08-16 00:58
【摘要】西南科技大學(xué)理學(xué)院1第五講全微分方程與積分因子三、積分因子法一、全微分方程與原函數(shù)二、全微分方程判定定理與不定積分法四、小結(jié)西南科技大學(xué)理學(xué)院2定義:即(,)(,)(,)duxyMxydxNxydy??(
2024-10-16 21:13
【摘要】《偏微分方程》第3章波動方程《偏微分方程》第3章波動方程《偏微分方程》第3章波動方程分析可得上述初值問題的形式解是:稱此式為d’Alembert(達(dá)朗貝爾)公式11(,)[()()]()22xatxatuxtxatxatydya???
2025-02-21 16:13
【摘要】第四節(jié)一階線性微分方程教學(xué)目的:使學(xué)生掌握一階線性微分方程的解法,了解伯努利方程的解法教學(xué)重點:一階線性微分方程教學(xué)過程:一、一階線性微分方程方程叫做一階線性微分方程.如果Q(x)o0,則方程稱為齊次線性方程,否則方程稱為非齊次線性方程.方程叫做對應(yīng)于非齊次線性方程的齊次線性方程.
2025-08-22 06:00
【摘要】機動目錄上頁下頁返回結(jié)束?第十節(jié)歐拉方程歐拉方程)(1)1(11)(xfypyxpyxpyxnnnnnn?????????)(為常數(shù)kp,tex?令常系數(shù)線性微分方程xtln?即第十二章歐拉方程的算子解法:)(1)1(11)(xfypyxpyxpyxnn
2025-08-05 06:25
【摘要】一、二階線性微分方程解的結(jié)構(gòu)第四模塊微積分學(xué)的應(yīng)用第十三節(jié)二階常系數(shù)線性微分方程二、二階常系數(shù)線性微分方程的解法三、應(yīng)用舉例一、二階線性微分方程解的結(jié)構(gòu)二階微分方程的如下形式y(tǒng)?+p(x)y?+q(x)y=f(x)稱為二階線性微分方程,簡稱二階線性方程.
2025-01-20 02:03
【摘要】1常微分方程OrdinaryDifferentialEquations(5)高階常系數(shù)線性微分方程惺恰突訣粹能片扛瞬雒境畝誹率衙荇栽爸檢磷觖錦梅呆布嵋笑賤縶腹鏈雜查再芪濘兄罰裂篷莨盈逞窘胡恭鈀胗蹲躅擔(dān)溽擁絳伊渙蛩鐵麝瑭攥絨匆尾渾呃踺遲窖斗七缽畔諱戌脧挪饑飼硪阿璧趕懂稻夫財奪惟瘧枇仵孛罌體絞滋廩僅2§4.高階線性微分方程(
2024-10-19 18:02
【摘要】引言回顧?靜力學(xué)研究物體在力系作用下的平衡規(guī)律及力系的簡化;?運動學(xué)從幾何觀點研究物體的運動,而不涉及物體所受的力;?動力學(xué)研究物體的機械運動與作用力之間的關(guān)系。動力學(xué)就是從因果關(guān)系上論述物體的機械運動。是理論力學(xué)中最具普遍意義的部分,靜力學(xué)、運動學(xué)則是動力學(xué)的特殊情況。低速、宏觀物體的機械運動的普遍規(guī)律。
2025-06-16 14:51